精英家教網 > 高中數學 > 題目詳情
設函數
(1)若關于x的不等式有實數解,求實數m的取值范圍;
(2)設,若關于x的方程至少有一個解,求p的最小值.
(3)證明不等式:    
(1)(2)p的最小值為0(3)見解析

試題分析:
(1)存在性問題,只需要即可,再利用導數法求解f(x)的最大值(即求導,求單調性,求極值9與端點值比較得出最值).
(2) p的最小值為函數g(x)的最小值,利用導數求函數的最小值即可(即求導,求單調性,求極值9與端點值比較得出最值).
(3)利用第二問結果可以得到與不等式有關的恒等式.令.把n=1,2,3,,得n個不等式左右相加,左邊利用對數除法公式展開即可用裂項求和法得到不等式的左邊,即證得原式
試題解析:
(1)依題意得
,而函數的定義域為
上為減函數,在上為增函數,則上為增函數
,即實數m的取值范圍為                4分
(2) 則
顯然,函數上為減函數,在上為增函數,則函數的最小值為
所以,要使方程至少有一個解,則,即p的最小值為0                8分
(3)由(2)可知: 上恒成立
所以,當且僅當x=0時等號成立
,則 代入上面不等式得:
,  即  
所以,,,,,
將以上n個等式相加即可得到:              12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若方程內有兩個不等的實根,求實數m的取值范圍;(e為自然對數的底數)
(2)如果函數的圖象與x軸交于兩點、.求證:(其中正常數).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義在實數集上的函數.
⑴求函數的圖象在處的切線方程;
⑵若對任意的恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,().
(1)若有最值,求實數的取值范圍;
(2)當時,若存在,使得曲線處的切線互相平行,求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax2+ln(x+1).
(1)當a=時,求函數f(x)的單調區間;
(2)當時,函數y=f(x)圖像上的點都在所表示的平面區域內,求實數a的取值范圍;
(3)求證:(其中,e是自然數對數的底數)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,,且直線與曲線相切.
(1)若對內的一切實數,不等式恒成立,求實數的取值范圍;
(2)當時,求最大的正整數,使得對是自然對數的底數)內的任意個實數 都有成立;
(3)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

定義在上的函數滿足:,且對于任意的,都有,則不等式的解集為 __________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

f(x),g(x)分別是定義在R上的奇函數和偶函數.當x<0時,f′(x)g(x)+f(x)g′(x)> 0,且g(-3)=0,則不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為R上的可導函數,且滿足,對任意正實數,下面不等式恒成立的是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视