精英家教網 > 高中數學 > 題目詳情

【題目】下列說法中,正確的是 . (填序號)
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②在同一平面直角坐標系中,y=2x與y=2x的圖象關于y軸對稱;
③y=( x是增函數;
④定義在R上的奇函數f(x)有f(x)f(﹣x)≤0.

【答案】②④
【解析】解:①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1或k=0,故錯誤;
②在同一平面直角坐標系中,y=2x與y=2x的圖象關于y軸對稱,故正確;
③y=( x是減函數,故錯誤;
④定義在R上的奇函數f(x)有f(x)f(﹣x)≤0,故正確.
所以答案是:②④
【考點精析】根據題目的已知條件,利用命題的真假判斷與應用的相關知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+c,(a,b,c∈R)滿足,對任意實數x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達式;
(3)在(2)的條件下,設g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點都位于直線y= 的上方,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=
(1)在下列直角坐標系中畫出f(x)的圖象;

(2)若f(x)=3,求x的值;
(3)看圖象寫出函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知圓錐和圓柱的組合體(它們的底面重合),圓錐的底面圓半徑為, 為圓錐的母線, 為圓柱的母線, 為下底面圓上的兩點,且, , .

(1)求證:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= +x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數f(x)在區間(1,+∞)上為增函數;
(3)求函數f(x)在區間[1,3]的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, 為自然對數的底數).

(Ⅰ)討論函數的極值點的個數;

(Ⅱ)若函數的圖象與函數的圖象有兩個不同的交點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)當a=1時,求f(x)的單調區間;
(Ⅱ)當x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當x∈(0,+∞)時,ln

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,點是圓上的任意一點,設為該圓的圓心,并且線段的垂直平分線與直線交于點.

(1)求點的軌跡方程;

(2)已知兩點的坐標分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin2x的圖象向左平移 個單位,再向上平移1個單位,所得圖象的函數解析式是(
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视