【題目】已知直線l:x+y﹣4=0,定點P(2,0),E,F分別是直線l和y軸上的動點,則△PEF的周長的最小值為( 。
A.2
B.6
C.3
D.2
科目:高中數學 來源: 題型:
【題目】已知動點到直線
的距離是它到點
的距離的
倍.
(1)求動點的軌跡
的方程;
(2)設軌跡上一動點
滿足:
,其中
是軌跡
上的點,且直線
與
的斜率之積為
,若
為一動點,
,
為兩定點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點E是PD的中點.
(Ⅰ)求證:AC⊥PB;
(Ⅱ)求證:PB∥平面AEC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,過橢圓
:
(
)焦點的直線
交
于
兩點,
為
的中點,且
的斜率為9.
(Ⅰ)求的方程;
(Ⅱ)是
的左、右頂點,
是
上的兩點,若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點.
(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F分別是AB,CD上的點,EF∥BC,AE=x,G是BC的中點,沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)當x=2時,①求證:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱錐D﹣FBC的體積是否可能等于幾何體ABE﹣FDC體積的一半?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)設全集U=AUB,求(UA)U(UB).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com