【題目】
已知是遞增數列,其前
項和為
,
,且
,
.
(Ⅰ)求數列的通項
;
(Ⅱ)是否存在使得
成立?若存在,寫出一組符合條件的
的值;若不存在,請說明理由;
(Ⅲ)設,若對于任意的
,不等式
恒成立,求正整數
的最大值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(2+x)+lg(2﹣x).
(1)求函數f(x)的定義域并判斷函數f(x)的奇偶性;
(2)記函數g(x)= +3x,求函數g(x)的值域;
(3)若不等式 f(x)>m有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線
的參數方程是
(m>0,t為參數),曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若直線與
軸交于點
,與曲線
交于點
,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.
(1)若命題p為真命題,求實數a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點
的直線l的參數方程為
(為參數),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數列,求a的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將余弦函數的圖象向右平移個單位后,再保持圖象上點的縱坐標不變,橫坐標變為原來的一半,得到函數
的圖象,下列關于
的敘述正確的是( )
A. 最大值為,且關于
對稱
B. 周期為,關于直線
對稱
C. 在上單調遞增,且為奇函數
D. 在上單調遞減,且為偶函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
為實數)有極值,且在
處的切線與直線
平行.
(1)求實數的取值范圍;
(2)是否存在實數,使得函數
的極小值為1,若存在,求出實數
的值;若不存在,請說明理由;
(3)設函數 試證明:
在
上恒成立并證明
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com