【題目】為了研究某種細菌的繁殖個數y隨天數x的變化情況,收集數據如下:
天數x | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖個數y | 6 | 12 | 25 | 49 | 95 | 190 |
(1)根據散點圖,判斷與
哪一個適合作為y關于x的回歸方程類型;(給出判斷即可,不用說明理由)
(2)根據(1)中的判斷及表中數據,求y關于x的回歸方程參考數據:
,
,
,
,
,
參考公式:
科目:高中數學 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”,隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段,某從業者為了解自己在個稅新政下能享受多少稅收紅利,繪制了他在26歲~35歲(2009年~2018年)之間各月的月平均收入
(單位:千元)的散點圖:
(1)由散點圖知,可用回歸模型擬合
與
的關系,試根據有關數據建立
關于
的回歸方程;
(2)如果該從業者在個稅新政下的專項附加扣除為3000元/月,試利用(1)的結果,將月平均收入為月收入,根據新舊個稅政策,估計他36歲時每個月少繳交的個人所得稅.
附注:
參考數據,
,
,
,
,
,
,其中
;取
,
參考公式:回歸方程中斜率和截距的最小二乘估計分別為
,
新舊個稅政策下每月應納稅所得額(含稅)計算方法及稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
稅繳級數 | 每月應納稅所得額(含稅) =收入-個稅起征點 | 稅率 (%) | 每月應納稅所得額(含稅) =收入一個稅起征點-專項附加扣除 | 稅率 (%) |
1 | 不超過1500元的部分 | 3 | 不超過3000元的部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元155000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從8名運動員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數字結尾)
(1)甲、乙兩人必須跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
的左、右焦點分別為
,
軸,直線
交
軸于
點,
,
為橢圓
上的動點,
的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓
分別交于
且使
軸,如圖,問四邊形
的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】畫糖人是一種以糖為材料在石板上進行造型的民間藝術.某糖人師傅在公園內畫糖人,每天賣出某種糖人的個數與價格相關,其相關數據統計如下表:
每個糖人的價格 | 9 | 10 | 11 | 12 | 13 |
賣出糖人的個數 | 54 | 50 | 46 | 43 | 39 |
(1)根據表中數據求關于
的回歸直線方程;
(2)若該種造型的糖人的成本為2元/個,為使糖人師傅每天獲得最大利潤,則該種糖人應定價多少元?(精確到1元)
參考公式:回歸直線方程,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著電子商務的發展,人們的購物習慣正在改變,基本上所有的需求都可以通過網絡購物解決.小王是位網購達人,每次購買商品成功后都會對電商的商品和服務進行評價.現對其近年的200次成功交易進行評價統計,統計結果如下表所示.
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1)是否有的把握認為商品好評與服務好評有關? 請說明理由;
(2)現從這200次交易中,按照“對商品好評”和“對商品不滿意”采用分層抽樣取出5次交易,然后從這5次交易中任選兩次進行觀察,求這兩次交易中恰有一次“對商品好評”的概率.
附:(其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com