【題目】已知函數.
(1)當時,判斷
在定義域上的單調性;
(2)若對定義域上的任意的,有
恒成立,求實數a的取值范圍;
(3)證明:,
.
科目:高中數學 來源: 題型:
【題目】設橢圓的一個焦點為
,四條直線
,
所圍成的區域面積為
.
(1)求的方程;
(2)設過的直線
與
交于不同的兩點
,設弦
的中點為
,且
(
為原點),求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人利用一根原木制作一件手工作品,該作品由一個球體和一個正四棱柱組成,假定原 木為圓柱體(如圖1),底面半徑為,高為
,制作要求如下:首先需將原木切割為兩部分(分別稱為第I圓柱和第II圓柱),要求切面與原木的上下底面平行(不考慮損耗) 然后將第I圓柱切割為一個球體,要求體積最大,將第II圓柱切割為一個正四棱柱,要求正四棱柱的上下底面分別為第II圓柱上下底面圓的內接正方形.
(1)當時,若第I圓柱和第II圓柱的體積相等,求該手王作品的體積;
(2)對于給定的和
,求手工作品體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某校甲、乙、丙三個興趣小組的學生人數分別為36,24,24.現采用分層抽樣的方法從中抽取7人,進行睡眠質量的調查.
(1)應從甲、乙、丙三個興趣小組的學生中分別抽取多少人?
(2)若抽出的7人中有3人睡眠不足,4人睡眠充足,現從這7人中隨機抽取3人做進一步的身體檢查.用表示抽取的3人中睡眠充足的學生人數,求隨機變量
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:(
)的焦點為F,圓C:
,點
為拋物線上一動點.當
時,
的面積為
.
(1)求拋物線E的方程;
(2)若,過點P作圓C的兩條切線分別交y軸于M,N兩點,求
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com