精英家教網 > 高中數學 > 題目詳情

已知函數,h(x)=2alnx,.
(1)當a∈R時,討論函數的單調性;
(2)是否存在實數a,對任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.

(1)詳見解析;(2)不存在.

解析試題分析:(1)討論函數的單調性,在定義域內研究其導函數的符號即可.先求導函數
,因為定義域為,故只需討論分子符號,可結合二次函數的圖象判斷,此時①需討論交點的大小,②注意根與定義域比較,所以需和-2和0比較大;(2)由對稱性,不妨設,去分母得,構造函數,則其在定義域內單調遞減,故恒成立,而,分子二次函數開口向上,不可能永遠小于0,故不存在.
試題解析:(1),∴ , 的定義域為.
①當時,上是減函數,在在上是增函數;
②當時,上是增函數;在是是減函數;在上是增函數;
③當時,上是增函數;
④當時,上是增函數;在上是減函數;在上是增函數.
(2)假設存在實數,對任意的,且,都有恒成立,不妨設,要使,即.
 ,只要為減函數.
,由題意上恒成立,得不存在. 
考點:1、導數在單調性上的應用;2、二次函數的圖象;3、函數思想的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

若函數f(x)對任意的實數x1x2D,均有|f(x2)-f(x1)|≤|x2x1|,則稱函數f(x)是區間D上的“平緩函數”.
(1)判斷g(x)=sin xh(x)=x2x是不是實數集R上的“平緩函數”,并說明理由;
(2)若數列{xn}對所有的正整數n都有|xn+1xn|≤,設yn=sin xn,求證:|yn+1y1|<.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

上海某化學試劑廠以x千克/小時的速度生產某種產品(生產條件要求),為了保證產品的質量,需要一邊生產一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產運輸該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產運輸900千克該產品獲得的利潤最大,問:該工廠應該選取何種生產速度?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分) 已知函數
(1)當的極值點;
(2)當上的根的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求值:(1) 
(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點,點在曲線:上.
(1)若點在第一象限內,且,求點的坐標;
(2)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數).
(Ⅰ)求函數的定義域;
(Ⅱ)若,,求函數的值域;
(Ⅲ)若函數的圖像恒在直線的上方,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義,,.
(1)比較的大。
(2)若,證明:;
(3)設的圖象為曲線,曲線處的切線斜率為,若,且存在實數,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若非零函數對任意實數均有,且當
(1)求證:
(2)求證:為R上的減函數;
(3)當時, 對時恒有,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视