【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓
的焦點為頂點作相似橢圓
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓
交于
兩點,且與橢圓
僅有一個公共點,試判斷
的面積是否為定值(
為坐標原點)?若是,求出該定值;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】某保險公司給年齡在歲的民眾提供某種疾病的一年期醫療保險,現從
名參保人員中隨機抽取
名作為樣本進行分析,按年齡段
分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示. 據統計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.
年齡 (單位:歲) | |||||
保費 (單位:元) |
(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數時的最小值
;
(2)經調查,年齡在之間老人每
人中有
人患該項疾病(以此頻率作為概率).該病的治療費為
元,如果參保,保險公司補貼治療費
元.某老人年齡
歲,若購買該項保險(
取
中的
).針對此疾病所支付的費用為
元;若沒有購買該項保險,針對此疾病所支付的費用為
元.試比較
和
的期望值大小,并判斷該老人購買此項保險是否劃算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓的離心率為
,左右焦點分別是
和
,以
為圓心,3為半徑的圓與以
為圓心,1為半徑的圓相交,且交點在橢圓C上.
(1)求橢圓C的方程.
(2)設橢圓,P為橢圓C上任意一點,過點P的直線
交橢圓E于A、B兩點,射線OP交橢圓E于點Q.
①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.
②求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出兩塊相同的正三角形鐵皮(如圖1,圖2),
(1)要求用其中一塊剪拼成一個三棱錐模型,另一塊剪拼成一個正三棱柱模型,使它們的全面積都與原三角形的面積相等,
①請設計一種剪拼方法,分別用虛線標示在圖1、圖2中,并作簡要說明;
②試比較你剪拼的正三棱錐與正三棱柱的體積的大小
(2)設正三角形鐵皮的邊長為,將正三角形鐵皮的三個角切去三個全等的四邊形,再把它的邊沿虛線折起(如圖3),做成一個無蓋的正三角形底鐵皮箱,當箱底邊長為多少時,箱子容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中共有8個球,其中有3個白球,5個黑球,這些球除顏色外完全相同.從袋中隨機取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補一個白球放入袋中.重復上述過程次后,袋中白球的個數記為
.
(1)求隨機變量的概率分布及數學期望
;
(2)求隨機變量的數學期望
關于
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線(
為參數),直線
(
為參數,
),直線
與曲線
相切于點
,以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程及點
的極坐標;
(2)曲線的直角坐標方程為
,直線
的極坐標方程為
,直線
與曲線
交于在
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com