【題目】已知點A,B,C的坐標分別為A(3,0),B(0,3),C(cos α,sin α),α∈.
(1)若||=|
|,求角α的值;
(2)若=-1,求
的值.
【答案】(1)α=;(2)-
.
【解析】試題分析:(1)根據兩向量的模相等,利用兩點間的距離公式建立等式求得tanα的值,根據α的范圍求得α.
(2)根據向量的基本運算根據=-1,求得sin
+cos
=
,然后同角和與差的關系可得到2sin
cos
=-
,化簡代入即可.
試題解析:
(1)∵=(cos
-3,sin
),
=(cos
,sin
-3),
∴||=
,
||=
.
由||=|
|,得sin
=cos
.
又∵∈
,∴
=
.
(2)由=-1,得(cos
-3)cos
+sin
(sin
-3)=-1.
∴sin +cos
=
. ①
又=2sin
cos
.
由①式兩邊平方,得1+2sin cos
=
,
∴2sin cos
=-
.
∴=-
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點是
和
,并且經過點
,拋物線
的頂點在坐標原點,焦點恰好是橢圓
的右頂點.
(Ⅰ)求橢圓和拋物線
的標準方程;
(Ⅱ)已知點為拋物線
內一個定點,過
作斜率分別為
的兩條直線交拋物線
于點
,且
分別是
的中點,若
,求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列{an},定義 為{an}的“優值”,現在已知某數列{an}的“優值”
,記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數k的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調遞增區間和對稱中心坐標;
(3)將f(x)的圖象向左平移 個單位,再講橫坐標伸長到原來的2倍,縱坐標不變,最后將圖象向上平移1個單位,得到函數g(x)的圖象,求函數y=g(x)在
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
恒過定點
,圓
經過點
和點
,且圓心在直線
上.
(1)求定點的坐標;
(2)求圓的方程;
(3)已知點為圓
直徑的一個端點,若另一個端點為點
,問:在
軸上是否存在一點
,使得
為直角三角形,若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩直線l1:mx+8y+n=0和l2:2x+my﹣1=0,試確定m,n的值,使
(1)l1與l2相交于點P(m,﹣1);
(2)l1∥l2;
(3)l1⊥l2 , 且l1在y軸上的截距為﹣1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
:
,曲線
:
(
為參數),以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線,
的極坐標方程;
(Ⅱ)曲線:
(
為參數,
,
)分別交
,
于
,
兩點,當
取何值時,
取得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓和點
,動圓
經過點
且與圓
相切,圓心
的軌跡為曲線
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,點
在曲線
上,若直線
的斜率
滿足
求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線的直角坐標方程與曲線
的普通方程;
(2)將曲線經過伸縮變換
后得到曲線
,若
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com