精英家教網 > 高中數學 > 題目詳情

【題目】對于數列{an},定義 為{an}的“優值”,現在已知某數列{an}的“優值” ,記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數k的最大值為

【答案】
【解析】解:由題意, =2n+1 , 則a1+2a2+…+2n1an=n2n+1 ,
當n≥2時,a1+2a2+…+2n2an1=(n﹣1)2n
兩式相減可得2n1an=n2n+1﹣(n﹣1)2n=(n+1)2n ,
則an=2(n+1),
當n=1時,a1=4,
上式對a1也成立,
故an=2(n+1),n∈N+
則an﹣kn=(2﹣k)n+2,
則數列{an﹣kn}為等差數列,
故Sn≤S5對任意的n(n∈N*)恒成立可化為
a5≥0,a6≤0,
,
解得 ≤k≤ ,
則實數k的最大值為 ,
所以答案是:
【考點精析】本題主要考查了數列的前n項和的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,與軸不重合的直線經過左焦點,且與橢圓相交于, 兩點,弦的中點為,直線與橢圓相交于, 兩點.

(Ⅰ)若直線的斜率為1,求直線的斜率;

(Ⅱ)是否存在直線,使得成立?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 且cos( )= ,sin 求cos(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log (a5+a7+a9)的值是(
A.﹣
B.﹣5
C.5
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)的定義域為D,滿足:①f(x)在D內是單調函數;②存在[ ]D,使得f(x)在[ ]上的值域為[a,b],那么就稱函數y=f(x)為“優美函數”,若函數f(x)=logc(cx﹣t)(c>0,c≠1)是“優美函數”,則t的取值范圍為(
A.(0,1)
B.(0,
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且與直線相切于點.

1求圓方程;

2是否存在過點的直線與圓交于兩點,且的面積是為坐標原點),若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 恒過定點,圓經過點和點,且圓心在直線上.

(1)求定點的坐標;

(2)求圓的方程;

(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A,B,C的坐標分別為A(3,0),B(0,3),C(cos α,sin α),α.

(1)||=||,求角α的值;

(2)=-1,的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知離心率為的橢圓過點,點分別為橢圓的左、右焦點,過的直線交于兩點,且.

(1)求橢圓的方程;

(2)求證:以 為直徑的圓過坐標原點.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视