精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)的定義域為D,滿足:①f(x)在D內是單調函數;②存在[ ]D,使得f(x)在[ ]上的值域為[a,b],那么就稱函數y=f(x)為“優美函數”,若函數f(x)=logc(cx﹣t)(c>0,c≠1)是“優美函數”,則t的取值范圍為(
A.(0,1)
B.(0,
C.(﹣∞,
D.(0,

【答案】D
【解析】解:若c>1,則函數y=cx﹣t為增函數,y=logcx,為增函數,∴函數f(x)=logc(cx﹣t)為增函數, 若0<c<1,則函數y=cx﹣t為減函數,y=logcx,為減函數,∴函數f(x)=logc(cx﹣t)為增函數,
綜上:函數f(x)=logc(cx﹣t)為增函數,
若函數f(x)=logc(cx﹣t)(c>0,c≠1)是“優美函數”,
,即
, 是方程x2﹣x+t=0上的兩個不同的正根,
,
解得0<t<
故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,其中實數

(Ⅰ)判斷是否為函數的極值點,并說明理由;

(Ⅱ)若在區間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,

已知某圓的極坐標方程為:

(1)將極坐標方程化為直角坐標方程;

(2)若點 在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標原點如圖所示建立平面直角坐標系.

(Ⅰ)求曲線的方程;

(Ⅱ)設動直線交曲線兩點,且以為直徑的圓經過點,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于數列{an},定義 為{an}的“優值”,現在已知某數列{an}的“優值” ,記數列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數k的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數,且當時, ,則對任意,函數的零點個數至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線 恒過定點,圓經過點和點,且圓心在直線上.

(1)求定點的坐標;

(2)求圓的方程;

(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC的內角A、B、C的對邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视