【題目】平面直角坐標系中,傾斜角為
的直線l過點
,以原點
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的參數方程(
為常數)和曲線
的直角坐標方程;
(2)若直線與
交于
,
兩點,且
,求傾斜角
的值.
科目:高中數學 來源: 題型:
【題目】如圖,圓柱的軸截面是邊長為2的正方形,點
是圓弧
上的一動點(不與
重合),點
是圓弧
的中點,且點
在平面
的兩側.
(1)證明:平面平面
;
(2)設點在平面
上的射影為點
,點
分別是
和
的重心,當三棱錐
體積最大時,回答下列問題.
(ⅰ)證明:平面
;
(ⅱ)求平面與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,左、右焦點分別為
、
,拋物線
的焦點
恰好是該橢圓的一個頂點.
(1)求橢圓的方程;
(2)已知圓的切線
(直線
的斜率存在且不為零)與橢圓相交于
、
兩點,那么以
為直徑的圓是否經過定點?如果是,求出定點的坐標;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區.在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗. 在某普查小區,共有 50 家企事業單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業單位 | 40 | 10 | 50 |
個體經營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區采用的抽樣方法;
(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;
(3)以頻率作為概率, 某普查小組從該小區隨機選擇 1 家企事業單位,3 家個體經營戶作為普查對象,入戶登記順利的對象數記為, 寫出
的分布列,并求
的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐中,底面
為菱形,
,
平面
,
、
分別是
、
上的中點,直線
與平面
所成角的正弦值為
,點
在
上移動.
(Ⅰ)證明:無論點在
上如何移動,都有平面
平面
;
(Ⅱ)求點恰為
的中點時,二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場舉行雙12有獎促銷活動,顧客購買168元的商品后即可抽獎,抽獎方法是:從裝有2個紅球和1個白球
的甲箱與裝有2個紅球
和1個白球
的乙箱中,各隨機摸出1個球,這些球除顏色,標號外都一樣.若摸出的2個球顏色相同則中獎,否則不中獎.
(1)用球的標號列出所有可能的摸出結果;
(2)小明根據經驗認為:摸到同色球一般來說更為難得,所以猜測中獎的概率小于不中獎的概率,你認為小明的猜想正確嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為常數.
(1)當時,解不等式
;
(2)已知是以2為周期的偶函數,且當
時,有
.若
,且
,求函數
的反函數;
(3)若在上存在
個不同的點
,
,使得
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com