精英家教網 > 高中數學 > 題目詳情

【題目】某地區高考實行新方案,規定:語文、數學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統計選考科目人數如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?

(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數學期望.

【答案】;(;.

【解析】試題分析:設該學校選考方案確定的學生中選考生物的學生為(人);(根據古典概型概率公式可得該男生和該女生的選考方案中都含有歷史科目的概率為;(由題意知的所有可能取值為,根據古典概型概率公式計算出兩隨機變量對應的概率,可得到分布列,從而根據期望公式可得的值.

試題解析:(設該學校選考方案確定的學生中選考生物的學生為

(人),

所以該學校選考方案確定的學生中選考生物的學生為.

該男生和該女生的選考方案中都含有歷史科目的概率為

.

)由題意知的所有可能取值為

所以的分布列為

期望為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,且不等式對任意的恒成立.

(Ⅰ) 求的關系;

(Ⅱ) 若數列滿足:,,為數列的前項和.求證:;

(Ⅲ) 若在數列中,,為數列的前項和.求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在橢圓 上, 是橢圓的一個焦點.

)求橢圓的方程;

)橢圓C上不與點重合的兩點, 關于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x-3)2+(y-4)2=4.

(Ⅰ)過原點O(0,0)作圓C的切線,切點分別為H、K,求直線HK的方程;

(Ⅱ)設定點M(-3,8),動點N在圓C上運動,以CM,CN為領邊作平行四邊形MCNP,求點P的軌跡方程;

(Ⅲ)平面上有兩點A(1,0),B(-1,0),點P是圓C上的動點,求|AP|2+|BP|2的最小值;

(Ⅳ)若Q是x軸上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出定點坐標,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體的棱長為2PBC的中點,Q為線段上的動點,過點A,PQ的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫出所有正確命題的編號).

①當時,S為四邊形;②當時,S為等腰梯形;③當時,S的交點R滿足;④當時,S為五邊形;⑤當時,S的面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,求該函數的值域;

(2)求不等式的解集;

(3)若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓,圓與圓的公切線的條數的可能取值共有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合是集合 的一個含有個元素的子集.

(Ⅰ)當時,

(i)寫出方程的解

(ii)若方程至少有三組不同的解,寫出的所有可能取值.

(Ⅱ)證明:對任意一個,存在正整數使得方程 至少有三組不同的解.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E:的焦點在軸上,AE的左頂點,斜率為k k > 0)的直線交EA,M兩點,點NE上,MA⊥NA.

)當t=4,時,求△AMN的面積;

)當時,求k的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视