【題目】已知圓,圓
,圓
與圓
的公切線的條數的可能取值共有( )
A. 2種B. 3種C. 4種D. 5種
【答案】D
【解析】
求出兩圓的圓心距以及兩圓半徑之和和半徑之差,結合兩圓位置關系和切線條數關系進行判斷即可.
兩圓的圓心和半徑分別為A(0,0),半徑R=1, B(2,0),半徑為r,
|AB|=2,半徑之和為1+r,半徑之差為r-1,
若兩圓相外切,即1+r=2,即r=1時,此時兩圓公切線有3條,
若兩圓外離,則1+r<2,即0<r<1時,兩圓公切線有4條,
若兩圓相交,則r-1<2且2<1+r,即1<r<3時,兩圓相交,此時公切線有2條,
若兩圓內切,即r-1=2,即r=3時,此時兩圓公切線有1條,
若兩圓內含,即r-1>2,即r>3,此時兩圓公切線為0條,
即圓A與圓B的公切線的條數的可能取值有5種,
故選:D.
科目:高中數學 來源: 題型:
【題目】某地區高考實行新方案,規定:語文、數學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統計選考科目人數如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?
(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時
,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面六個句子中,錯誤的題號是________.
①周期函數必有最小正周期;
②若則
,
至少有一個為
;
③為第三象限角,則
;
④若向量與
的夾角為銳角,則
;
⑤存在,
,使
成立;
⑥在中,O為
內一點,且
,則O為
的重心.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某市統考的學生數學考試卷中隨機抽查100份數學試卷作為樣本,分別統計出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數學試卷成績的中位數;
(2)從總分在和
的試卷中隨機抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列:
滿足:
.記
的前
項和為
,并規定
.定義集合
,
,
.
(Ⅰ)對數列:
,
,
,
,
,求集合
;
(Ⅱ)若集合,
,證明:
;
(Ⅲ)給定正整數.對所有滿足
的數列
,求集合
的元素個數的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為
,圓
的方程為
,動圓
與圓
內切且與圓
外切.
(1)求動圓圓心的軌跡
的方程;
(2)已知與
為平面內的兩個定點,過
點的直線
與軌跡
交于
,
兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用適當的方法表示下列集合:
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數的全體;
(3)梯形的全體構成的集合;
(4)所有能被3整除的數的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com