【題目】宜昌市擬在2020年點軍奧體中心落成后申辦2022年湖北省省運會,據了解,目前武漢,襄陽,黃石等申辦城市因市民擔心賽事費用超支而準備相繼退出,某機構為調查宜昌市市民對申辦省運會的態度,選了某小區的100位居民調查結果統計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已知數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認為不同年齡與支持申辦省運會無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: ,
.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 20 | 60 | 80 |
年齡大于50歲 | 10 | 10 | 20 |
合計 | 30 | 70 | 100 |
(2) ,
所以能在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關;
(3)記5人為abcde,其中ab表示教師,從5人任意抽3人的所有等可能事件是:abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde共10個,其中至多1位教師有7個基本事件:acd,ace,ade,bcd,bce,bde,cde,所以所求概率是.
科目:高中數學 來源: 題型:
【題目】下列說法中不正確的序號為____________.
①若函數在
上單調遞減,則實數
的取值范圍是
;
②函數是偶函數,但不是奇函數;
③已知函數的定義域為
,則函數
的定義域是
;
④若函數在
上有最小值-4,(
,
為非零常數),則函數
在
上有最大值6.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了創建全國文明城市,面向社會招募志愿者,現從20歲至50歲的志愿者中按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示,若用分層抽樣的方法從這些志愿者中抽取20人參加“創建全國文明城市驗收日”的活動。
(1)求從第2組和第3組中抽取的人數分別是多少;
(2)若小李和小王都是32歲,同時參加了“創建全國文明城市驗收日”的活動,現要從第3組抽取的人中臨時抽調兩人去執行另一任務,求小李和小王至少有一人被抽調的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE= BB1 , C1F=
CC1 .
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點,A1G與平面AEF交于H,且設 =
,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記表示
,
中的最大值,如
.已知函數
,
.
(1)設,求函數
在
上零點的個數;
(2)試探討是否存在實數,使得
對
恒成立?若存在,求
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數在區間
上單調遞減,則實數
的取值范圍是( )
A. B.
C.
D.
【答案】C
【解析】∵,
∴,
由得
,
∴函數的單調減區間為
,
又函數在區間
上單調遞減,
∴
,
∴,解得
,
∴實數的取值范圍是
.選C.
點睛:已知函數在區間上的單調性求參數的方法
(1)利用導數求解,轉化為導函數在該區間上大于等于零(或小于等于零)恒成立的問題求解,一般通過分離參數化為求函數的最值的問題.
(2)先求出已知函數的單調區間,然后將問題轉化為所給的區間是函數相應的單調區間的子集的問題處理.
【題型】單選題
【結束】
7
【題目】設,函數
的圖象向右平移
個單位長度后與原圖象重合,則
的最小值是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出函數如下表,則f〔g(x)〕的值域為( )
x | 1 | 2 | 3 | 4 |
g(x) | 1 | 1 | 3 | 3 |
x | 1 | 2 | 3 | 4 |
f(x) | 4 | 3 | 2 | 1 |
A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情況都有可能
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,( a﹣sinC)cosB=sinBcosC,b=4
.
(1)求角B的大;
(2)D為BC邊上一點,若AD=2,S△DAC=2 ,求DC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知函數f(x)=|x﹣2|﹣|x﹣5|.
(1)證明:﹣3≤f(x)≤3;
(2)求不等式f(x)≥x2﹣8x+15的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com