精英家教網 > 高中數學 > 題目詳情

【題目】已知, 分別是橢圓 )的左、右焦點,離心率為 , 分別是橢圓的上、下頂點,

(1)求橢圓的方程;

(2)過作直線交于 兩點,求三角形面積的最大值(是坐標原點).

【答案】(1);(2)

【解析】試題分析:(1)根據離心率為 ,列出關于 、 、的方程組,結合性質 ,求出 、 、,即可得橢圓的方程;(2)直線斜率存在,設其方程為.,直線方程與橢圓方程聯立,根據韋達定理,弦長公式、點到直線距離公式及三角形面積公式將角形面積用 表示,利用基本不等式 即可得結果.

試題解析:(1)由題知, , , ,

,∴,①

,∴,∴,②

①②聯立解得, ,∴橢圓的方程為

(2)設, ,顯然直線斜率存在,設其方程為,

代入,整理得

,即, , ,

,

所以的距離

所以三角形面積 ,

,所以,

當且僅當,即,即,即時取等號,

所以面積的最大值為

【方法點晴】本題主要考查待定系數法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關結論來解決,非常巧妙;二是將圓錐曲線中最值問題轉化為函數問題,然后根據函數的特征選用參數法、配方法、判別式法、三角函數有界法、函數單調性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業,根據以往經驗,潛水員下潛的平均速度為 (米/單位時間),每單位時間的用氧量為(升),在水底作業10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記潛水員在此次考察活動中的總用氧量為 (升).

(1)求關于的函數關系式;

(2)求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】請認真閱讀下列程序框圖,然后回答問題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結果;
(2)若輸出的結果中有5,求輸入的自然數n0的所有可能的值;
(3)若輸出的結果中,只有三個自然數,求輸入的自然數n0的所有可能的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函數f(x)的圖象過原點,且在原點處的切線斜率為﹣3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x2+ax﹣2a2+3a)ex(x∈R),其中a∈R.
(1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當 時,求函數f(x)的單調區間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某景點擬建一個扇環形狀的花壇(如圖所示),按設計要求扇環的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為(弧度).

關于的函數關系式;

已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為16/米,設花壇的面積與裝飾總費用之比為,求關于的函數關系式,并求出的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 的定義域為(﹣1,1),滿足f(﹣x)=﹣f(x),且f( )=
(1)求函數f(x)的解析式;
(2)證明f(x)在(﹣1,1)上是增函數;
(3)解不等式f(x2﹣1)+f(x)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1﹣ABC的體積V.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數.

(1)當時, ,若當時, 恒成立,求的最小值;

(2)若的圖像關于對稱,且時, ,求當時, 的解析式;

(3)當時, .若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视