【題目】如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1﹣ABC的體積V.
【答案】
(1)證明:因為C是底面圓周上異于A,B的一點,AB是底面圓的直徑,
所以AC⊥BC.
因為AA1⊥平面ABC,BC平面ABC,所以AA1⊥BC,
而AC∩AA1=A,所以BC⊥平面AA1C.
又BC平面BA1C,所以平面AA1C⊥平面BA1C
(2)解:在Rt△ABC中,AB=2,則由AB2=AC2+BC2且AC=BC,
得 ,
所以
【解析】(1)證明BC⊥平面AA1C,即可證明平面AA1C⊥平面BA1C;(2)求出AC,直接利用體積公式求解即可.
【考點精析】根據題目的已知條件,利用平面與平面垂直的判定的相關知識可以得到問題的答案,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】已知角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點 .
(1)求sin2α﹣tanα的值;
(2)若函數f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函數 在區間
上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
分別是橢圓
:
(
)的左、右焦點,離心率為
,
,
分別是橢圓的上、下頂點,
.
(1)求橢圓的方程;
(2)過作直線
與
交于
,
兩點,求三角形
面積的最大值(
是坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個四棱錐的三視圖如圖所示,關于這個四棱錐,下列說法正確的是( )
A. 最長的棱長為
B. 該四棱錐的體積為
C. 側面四個三角形都是直角三角形
D. 側面三角形中有且僅有一個等腰三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最大值為
,
的圖象關于
軸對稱.
(Ⅰ)求實數的值;
(Ⅱ)設,是否存在區間
,使得函數
在區間
上的值域為
?若存在,求實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們把b除a的余數r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環體“r←abmodb”被執行了次.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com