【題目】請認真閱讀下列程序框圖,然后回答問題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結果;
(2)若輸出的結果中有5,求輸入的自然數n0的所有可能的值;
(3)若輸出的結果中,只有三個自然數,求輸入的自然數n0的所有可能的值.
【答案】
(1)解:若輸入n0=0,則輸出的數為20,10,5,4,2
(2)解:由(1)知所輸出的最大數為20,最小數為2共5個,輸入的n0越大,輸出的數越小,
所以要使輸出的數中有5,應使 ≥5.
解得n0=0,1,2,3.
所以輸入的可能的n0值為0,1,2,3
(3)解:由(1)(2)可知要使結果只有三個數,只能是5,4,2.
所以應使5≤ <10.
解得1<n0≤3,即n0=3,2.
所以輸入的n0可能值為2,3
【解析】(1)模擬程序框圖的運行過程,即可求出n0=0時輸出的數;(2)由(1)分析可得要使輸出的數中有5,應使 ≥5,即可得解;(3)分析程序的運行過程,即可得出結論.
【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名高三學生的課外體育鍛煉平均每天運動的時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總人數 | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均課外課外體育運動時間在[40,60)上的學生評價為“課外體育達標”.
(1)請根據上述表格中的統計數據填寫下面2×2列聯表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的“課外體育達標”學生人數為X,若每次抽取的結果是相互獨立的,求X的數學期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數據:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點 .
(1)求sin2α﹣tanα的值;
(2)若函數f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函數 在區間
上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數g(x)至少存在一個零點,則實數m的取值范圍是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
分別是橢圓
:
(
)的左、右焦點,離心率為
,
,
分別是橢圓的上、下頂點,
.
(1)求橢圓的方程;
(2)過作直線
與
交于
,
兩點,求三角形
面積的最大值(
是坐標原點).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com