【題目】△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點,現將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點,平面BCH與AE、AF分別交于I、G兩點
(Ⅰ)求證:IH∥BC;
(Ⅱ)求直線AE與平面角GIC所成角的正弦值.
【答案】(I)證明:DE∥BC,DE平面BCH,BC平面BCH,∴DE∥平面BCH,
∵平面ADE∩平面BCH=IH,
∴DE∥IH,
∴IH∥BC.
(II)解:建立如圖所示的空間直角坐標系.
D(0,0,0),A(0,0,2),E(0,﹣2,0),C(2,0,0),
H(0,0,1),B(2,﹣4,0), =(﹣2,0,1),
=(0,﹣4,0),
=(0,﹣2,﹣2).
設平面BCH的法向量為 =(x,y,z),則
,即
,取
=(1,0,2).
設直線AE與平面角GIC所成角為θ,則sinθ=|cos |=
=
=
.
【解析】(Ⅰ)DE∥BC,可得DE∥平面BCH,可得DE∥IH,即可證明IH∥BC.(Ⅱ)建立如圖所示的空間直角坐標系.設平面BCH的法向量為 =(x,y,z),則
,設直線AE與平面角GIC所成角為θ,則sinθ=|cos
|=
.
【考點精析】通過靈活運用直線與平面平行的性質和空間角的異面直線所成的角,掌握一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行;已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
即可以解答此題.
科目:高中數學 來源: 題型:
【題目】空間四邊形ABCD中,AD=BC=2,E,F分別是AB,CD的中點,EF= ,則異面直線AD,BC所成的角的補角為( )
A.120°
B.60°
C.90°
D.30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:A1C1=AB1;
(Ⅱ)若AC⊥AB1 , ∠BCC1=120°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,設點
(1,0),直線
:
,點
在直線
上移動,
是線段
與
軸的交點, 異于點R的點Q滿足:
,
.
(1)求動點的軌跡的方程;
(2) 記的軌跡的方程為
,過點
作兩條互相垂直的曲線
的弦.
,設
.
的中點分別為
.
問直線是否經過某個定點?如果是,求出該定點,
如果不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線的極坐標方程為
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)寫出曲線的參數方程和直線
的普通方程;
(2)已知點是曲線
上一點,求點
到直線
的最小距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com