【題目】某校為了探索一種新的教學模式,進行了一項課題實驗,甲班為實驗班,乙班為對比班,甲乙兩班的人數均為50人,一年后對兩班進行測試,測試成績的分組區間為[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到兩個班測試成績的頻率分布直方圖:
(1)完成下面2×2列聯表,你能有97.5%的把握認為“這兩個班在這次測試中成績的差異與實施課題實驗有關”嗎?并說明理由;
成績小于100分 | 成績不小于100分 | 合計 | |
甲班 | a= | b= | 50 |
乙班 | c=24 | d=26 | 50 |
合計 | e= | f= | 100 |
(2)現從乙班50人中任意抽取3人,記ξ表示抽到測試成績在[100,120)的人數,求ξ的分布列和數學期望Eξ.
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.204 | 6.635 | 7.879 | 10.828 |
【答案】
(1)12;38;36;64
(2)解:乙班測試成績在[100,120)的有25人,ξ可取0,1,2,3,
P(ξ=0)= =
,P(ξ=1)=
=
P(ξ=2)= =
,P(ξ=3)=
=
ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P |
Eξ=0× +1×
+2×
+3×
=
【解析】(1)由題意,a=0.024×10×50=12,b=50﹣12=38,e=12+24=36,f=38+26=64,
∴ ,
∵P(K2>5.204)=0.025,
∴有97.5%的把握認為這兩個班在這次測試中成績的差異與實施課題實驗有關”
【考點精析】解答此題的關鍵在于理解頻率分布直方圖的相關知識,掌握頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息,以及對用樣本的頻率分布估計總體分布的理解,了解樣本數據的頻率分布表和頻率分布直方圖,是通過各小組數據在樣本容量中所占比例大小來表示數據的分布規律,它可以讓我們更清楚的看到整個樣本數據的頻率分布情況,并由此估計總體的分布情況.
科目:高中數學 來源: 題型:
【題目】已知函數,曲線
在點
處的切線與直線
垂直(其中
為自然對數的底數).
(1)求的解析式及單調遞減區間;
(2)是否存在常數,使得對于定義域內的任意
,
恒成立,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點,
(
,
).
(1)設中點為
,
,求證:
平面
;
(2)若到平面
的距離為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中裝有圍棋黑色和白色棋子共7枚,從中任取2枚棋子都是白色的概率為. 現有甲、乙兩人從袋中輪流摸取一枚棋子.甲先摸,乙后取,然后甲再取,……,取后均不放回,直到有一人取到白棋即終止. 每枚棋子在每一次被摸出的機會都是等可能的.用
表示取棋子終止時所需的取棋子的次數.
(1)求隨機變量的概率分布列和數學期望
;
(2)求甲取到白棋的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①,一條寬為1km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費用分別是2萬元/km、4萬元/km.
(1)已知村莊A與B原來鋪設有舊電纜,但舊電纜需要改造,改造費用是0.5萬元/km.現決定利用此段舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費用的最小值;
(2)如圖②,點E在線段AD上,且鋪設電纜的線路為CE、EA、EB.若∠DCE=θ(0≤θ≤),試用θ表示出總施工費用y (萬元)的解析式,并求y的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex(ax+b)(其中e=2.71828…),g(x)=x2+2bx+2,已知它們在x=0處有相同的切線.
(1)求函數f(x),g(x)的解析式;
(2)若函數F(x)=f(x)+g(x)﹣2(ex+x),試判斷函數F(x)的零點個數,并說明理由;
(3)若函數f(x)在[t,t+1](t>﹣3)上的最小值為φ(t),解關于t的不等式φ(t)≤4e2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾個月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.
為此,某機構就是否支持發展共享單車隨機調查了50人,他們年齡的分布及支持發展共享單車的人數統計如下表:
年齡 | ||||||
受訪人數 | 5 | 6 | 15 | 9 | 10 | 5 |
支持發展 共享單車人數 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發展共享單車有關系;
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在,
的被調查人中各隨機選取兩人進行調查,記選中的4人中支持發展共享單車的人數為
,求隨機變量
的分布列及數學期望.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
極坐標系的極點在平面直角坐標系的原點處,極軸與
軸的正半軸重合,兩坐標系單位長度相同.已知曲線
的極坐標方程為
,直線
的參數方程為
(
為參數)。
(Ⅰ)將直線的參數方程化為普通方程,曲線
的極坐標方程化為直角坐標方程;
(Ⅱ)設曲線上到直線
的距離為
的點的個數為
,求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(其中e為自然對數的底數),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數n.[注意:7<e2<
].
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com