【題目】多面體中,△
為等邊三角形,△
為等腰直角三角形,
平面
,
平面
.
(1)求證:;
(2)若,
,求平面
與平面
所成的較小的二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)利用線面平行的性質定理,分別證得和
,即可證;
(2)分別證得兩兩垂直,建立空間直角坐標系即可求解.
解:(1)證明:因為平面
,
平面
,平面
平面
,
所以,
同理可證,,
所以.
(2)因為△為等腰直角三角形,
,所以
,
,
又,
,所以四邊形
為平行四邊形,
所以,
因為△為等邊三角形,所以
,
取的中點
,連結
、
,
因為,則
,
又,且
,
所以四邊形為平行四邊形,
所以,
在中,
,
所以,即
,進而
,
同理可證,進而
,
以點為原點,分別以
,
,
所在直線為
,
,
軸,建立空間直角坐標系,
則,
,
,
,
,
設平面的一個法向量為
,
則,令
,則
,
,
所以,
易知平面的一個法向量為
,
,
所以平面與平面
所成的較小的二面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】莊子說:“一尺之錘,日取其半,萬世不竭”,這句話描述的是一個數列問題,現用程序框圖描述,如圖所示,若輸入某個正整數n后,輸出的S∈(,
),則輸入的n的值為( 。
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校兩個班級100名學生在一次考試中的成績的頻率分布直方圖如圖所示,其中成績分組區如下表:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 |
(1)求頻率表分布直方圖中a的值;
(2)根據頻率表分布直方圖,估計這100名學生這次考試成績的平均分;
(3)現用分層抽樣的方法從第三、四、五組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著社會的發展與進步,傳播和存儲狀態已全面進入數字時代,以數字格式存儲,以互聯網為平臺進行傳輸的音樂——數字音樂已然融入了我們的日常生活.雖然我國音樂相關市場仍處在起步階段,但政策利好使音樂產業逐漸得到資本市場更多的關注.對比如下兩幅統計圖,下列說法正確的是( )
A.2011~2018年我國音樂產業投融資事件數量逐年增長
B.2013~2018年我國錄制音樂營收與音樂產業投融資事件數量呈正相關關系
C.2016年我國音樂產業投融資事件的平均營收約為1.27億美元
D.2013~2019年我國錄制音樂營收年增長率最大的是2018年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生考試中答對但得不了滿分的原因多為答題不規范,具體表現為:解題結果正確,無明顯推理錯誤,但語言不規范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”.為評估此類解答導致的失分情況,某市教研室做了一項試驗:從某次考試的數學試卷中隨機抽取若干屬于“
類解答”的題目,掃描后由近百名數學老師集體評閱,統計發現,滿分12分的題,閱卷老師所評分數及各分數所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數所占比例 |
某次數學考試試卷評閱采用“雙評+仲裁”的方式,規則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數和一、二評中與之接近的分數的平均分為該題得分;當一、二評分數和仲裁分數差值的絕對值相同時,取仲裁分數和前兩評中較高的分數的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分
的分布列及數學期望
;
(2)本次數學考試有6個解答題,每題滿分均為12分,同學乙6個題的解答均為“類解答”,記該同學6個題中得分為
的題目個數為
,
,
,計算事件“
”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,將曲線
繞極點逆時針旋轉
后得到曲線
.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線:
與
,
分別相交于異于極點的
,
兩點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國慶節來臨,某公園為了豐富廣大人民群眾的業余生活,特地以“我們都是中國人”為主題舉行猜謎語競賽.現有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學從中任取3道題解答.
(1)求孫同學至少取到2道文義謎題的概率;
(2)如果孫同學答對每道事物謎題的概率都是,答對每道文義謎題的概率都是
,且各題答對與否相互獨立,已知孫同學恰好選中2道事物謎題,1道文義謎題,用
表示孫同學答對題的個數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對數是簡化繁雜運算的產物.16世紀時,為了簡化數值計算,數學家希望將乘除法歸結為簡單的加減法.當時已經有數學家發現這在某些情況下是可以實現的.
比如,利用以下2的次冪的對應表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16與256;然后找出它們在第一行對應的數,即4與8,并求它們的和,即12;最后在第一行中找到12,讀出其對應的第二行中的數4096,這就是的值.
用類似的方法可以算出的值,首先,在第二行找到4096與128;然后找出它們在第一行對應的數,即12與7,并求它們的______;最后在第一行中找到______,讀出其對應的第二行中的數______,這就是
值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com