【題目】函數的定義域為
,且對任意
,有
,且當
時
.
(1)證明:是奇函數;
(2)證明:在
上是減函數;
(3)求在區間
上的最大值和最小值.
【答案】(1)證明見解析;(2)證明見解析;(3) 最大值是6,最小值是-6.
【解析】
(1)令x=y=0,則可得f(0)=0;y=﹣x,即可證明f(x)是奇函數,
(2)設x1>x2,由已知可得f(x1﹣x2)<0,再利用f(x+y)=f(x)+f(y),及減函數的定義即可證明.
(3)由(2)的結論可知f(﹣3)、f(3)分別是函數y=f(x)在[﹣3、3]上的最大值與最小值,故求出f(﹣3)與f(3)就可得所求值域.
(1)因為的定義域為
,且
,
令得
,所以
;
令,則
,所以
,
從而有,所以
,所以
是奇函數.
(2)任取,且
,
則
,
因為,所以
,所以
,所以
,
所以,從而
在
上是減函數.
(3)由于在
上是減函數,
故在區間
上的最大值是
,最小值是
,
由于,所以
,
由于為奇函數知,
,
從而在區間
上的最大值是6,最小值是
6.
科目:高中數學 來源: 題型:
【題目】已知菱形,
在
軸上且
,
(
,
).
(Ⅰ)求點軌跡
的方程;
(Ⅱ)延長交軌跡
于點
,軌跡
在點
處的切線與直線
交于點
,試判斷以
為圓心,線段
為半徑的圓與直線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為保護農民種糧收益,促進糧食生產,確保國家糧食安全,調動廣大農民糧食生產的積極性,從2004年開始,國家實施了對種糧農民直接補貼.通過對2014~2018年的數據進行調查,發現某地區發放糧食補貼額(億元)與該地區糧食產量
(萬億噸)之間存在著線性相關關系.統計數據如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
補貼額 | 9 | 10 | 12 | 11 | 8 |
糧食產量 | 23 | 25 | 30 | 26 | 21 |
(1)請根據如表所給的數據,求出關于
的線性回歸直線方程
;
(2)通過對該地區糧食產量的分析研究,計劃2019年在該地區發放糧食補貼額7億元,請根據(1)中所得的線性回歸直線方程,預測2019年該地區的糧食產量.
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中中,直線
,圓
的參數方程為
為參數),以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求直線和圓
的極坐標方程;
(2)若直線與圓
交于
兩點,且
的面積是
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某工廠生產線上隨機抽取16件零件,測量其內徑數據從小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.據此可估計該生產線上大約有25%的零件內徑小于等于___________㎜,大約有30%的零件內徑大于___________mm(單位:mm).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com