精英家教網 > 高中數學 > 題目詳情

【題目】已知公比為負值的等比數列{an}中,a1a5=4,a4=﹣1.
(1)求數列{an}的通項公式;
(2)設bn= + +…+ ,求數列{an+bn}的前n項和Sn

【答案】
(1)解:設等比數列{an}的公比為q<0,

∵a1a5=4,a4=﹣1.

, =﹣1,解得q=﹣ ,a1=8.

=


(2)解:∵bn= + +…+

=(n+1)[ +…+ ]

=(n+1)× =n,

∴an+bn= +n,

其前n項和Sn= + = +


【解析】(1)設等比數列{an}的公比為q<0,由a1a5=4,a4=﹣1.可得 , =﹣1,解得即可;(2)由bn= + +…+ =(n+1)[ +…+ ]=n,可得an+bn= +n,再利用等差數列與等比數列的前n項和公式即可得出.
【考點精析】認真審題,首先需要了解等比數列的通項公式(及其變式)(通項公式:),還要掌握數列的前n項和(數列{an}的前n項和sn與通項an的關系)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知是首項為19,公差為-2的等差數列的前項和

1求通項;

2是首項為1公比為3的等比數列,求數列的通項公式及其前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內,當x= 時,f(x)取得最大值3;當x= 時,f(x)取得最小值﹣3.
(1)求函數f(x)的解析式;
(2)求函數f(x)的單調遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, =2.718………),

(I) 當時,求函數的單調區間;

(II)當時,不等式對任意恒成立,

求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面是平行四邊形, 平面的中點, 的中點.

(1)求證: 平面;

(2),求證:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, 是圓的直徑,點是圓上異于的點,直線度平面, 、分別是的中點.

(Ⅰ)設平面與平面的交線為,求直線與平面所成角的余弦值;

(Ⅱ)設(Ⅰ)中的直線與圓的另一個交點為點,且滿足 ,當二面角的余弦值為時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉成.若為線段的中點,則在翻折過程中:

是定值;②點在某個球面上運動;

③存在某個位置,使;④存在某個位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某同學用“隨機模擬方法”計算曲線與直線, 所圍成的曲邊三角形的面積時,用計算機分別產生了10個在區間上的均勻隨機數和10個區間上的均勻隨機數, ),其數據如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個曲邊三角形面積的一個近似值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數f(x)零點個數;
(2)若對x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個實數根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當x=﹣1時,函數f(x)有最小值0;
②對任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视