精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線上橫坐標為的點到焦點的距離為.

1)求拋物線的方程;

2若過點的直線與拋物線交于不同的兩點,且以為直徑的圓過坐標原點,求的面積。

【答案】(1);(2

【解析】試題分析:1由拋物線上橫坐標為的點到焦點的距離為可得 解得,從而可得拋物線的方程;(2先討論直線斜率不存在時的情況,當斜率存在時,設直線方程為聯立,消去,根據韋達定理、平面向量數量積公式以及弦長公式、點到直線距離公式與三角形面積公式可求得的面積.

試題解析:(1)依題意: 解得,所以拋物線的方程為

(2)依題意:若直線斜率不存在時,直線與拋物線只有一個交點,不符合題意;

所以設直線方程為

聯立,消去

所以

因為以為直徑的圓過坐標原點,所以,

所以

解得,點到直線的距離為

所以。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】解下列關于x的不等式:

(1); (2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設公差不為零的等差數列{an}的前5項的和為55,且a2 , ﹣9成等比數列.
(1)求數列{an}的通項公式.
(2)設數列bn= ,求證:數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖是根據調查結果繪制的兩幅不完整的統計圖,請你根據統計圖提供的信息解答以下問題:

(1)本次一共調查了多少名學生.(2)在圖(1)中將對應的部分補充完整.

(3)若該校有3 000名學生,你估計全校有多少名學生平均每天參加體育活動的時間在0.5時以下?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某城市氣象部門的數據中,隨機抽取100天的空氣質量指數的監測數據如表:

空氣質量指數t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

質量等級

輕微污染

輕度污染

中度污染

嚴重污染

天數K

5

23

22

25

15

10

(1)若該城市各醫院每天收治上呼吸道病癥總人數y與當天的空氣質量取整數)存在如下關系 且當t>300時,y>500,估計在某一醫院收治此類病癥人數超過200人的概率;

(2)若在(1)中,當t>300時,yt的關系擬合的曲線為,現已取出了10對樣本數據(ti,yi)(i=1,2,3,,10),且知 試用可線性化的回歸方法,求擬合曲線的表達式.(附:線性回歸方程中, , .)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商品一年內出廠價格在6元的基礎上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內的銷售價格在8元基礎上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,函數,若的圖象上相鄰兩條對稱軸的距離為,圖象過點.

(1)求表達式和的單調增區間;

(2)將函數的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數的圖象,若函數在區間上有且只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數,其中a為常數.

I)若x=1是函數的一個極值點,求a的值

II)若函數在區間(-1,0)上是增函數,求a的取值范圍

III)若函數,在x=0處取得最大值,求正數a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分分)

已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數,且與直線相切.

(Ⅰ)求圓的方程.

)設直線與圓相交于, 兩點,求實數的取值范圍.

)在()的條件下,是否存在實數,使得點 兩點的距離相等,若存在,求出實數的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视