【題目】△ABC的三個內角A、B、C的對邊分別是a,b,c,給出下列命題: ①若sinBcosC>﹣cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是 . (注:把你認為正確的命題的序號都填上)
【答案】②③④
【解析】解:①若sinBcosC>﹣cosBsinCsinBcosC+cosBsinC=sin(B+C)>00<B+C<π,所以①不一定成立; ②∵sinA= ,sinB=
,sinC=
,∴
+
=
,即a2+b2=c2 , ∴△ABC是直角三角形,②成立,
③若bcosA=acosB2rsinBcosA=2rsinAcosBsin(B﹣A)=0A=B即③成立.
④在△ABC中,若A>Ba>b2rsinA>2rsinBsinA>sinB即④成立;
故正確命題的是②③④.
所以答案是:②③④.
【考點精析】根據題目的已知條件,利用命題的真假判斷與應用的相關知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數學 來源: 題型:
【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側有,
兩個蔬菜基地,江岸的另一側點
處有一個超市.已知
、
、
中任意兩點間的距離為
千米,超市欲在
之間建一個運輸中轉站
,
,
兩處的蔬菜運抵
處后,再統一經過貨輪運抵
處,由于
,
兩處蔬菜的差異,這兩處的運輸費用也不同.如果從
處出發的運輸費為每千米
元.從
處出發的運輸費為每千米
元,貨輪的運輸費為每千米
元.
(1)設,試將運輸總費用
(單位:元)表示為
的函數
,并寫出自變量的取值范圍;
(2)問中轉站建在何處時,運輸總費用
最?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2≥1}, ,則A∩(RB)=( )
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對邊分別為a,b,c且acosC,bcosB,ccosA成等差數列.
(1)求B的值;
(2)求2sin2A﹣1+cos(A﹣C)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取了40輛汽車在經過路段上某點時的車速(km/h),現將其分成六段: ,
,
,
,
,
,后得到如圖所示的頻率分布直方圖.
(Ⅰ)現有某汽車途經該點,則其速度低于80km/h的概率約是多少?
(Ⅱ)根據直方圖可知,抽取的40輛汽車經過該點的平均速度約是多少?
(Ⅲ)在抽取的40輛且速度在(km/h)內的汽車中任取2輛,求這2輛車車速都在
(km/h)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | 1 | 2 | 3 |
利潤 | 2 | 3.9 | 5.5 |
(1)求利潤關于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預測4月和5月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?
相關公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我市某機構為調查2017年下半年落實中學生“陽光體育”活動的情況,設平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,圖1是此次調查中某一項的流程圖,其輸出的結果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內的學生的頻率是( )
圖1
A. 0.64 B. 0.36 C. 6400 D. 3600
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是公比為
的等比數列,且
是
與
的等比中項,其前
項和為
;數列
是等差數列,
,其前
項和
滿足
(
為常數,且
).
(1)求數列的通項公式及
的值;
(2)求.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com