【題目】拋物線的圖象關于軸對稱,頂點在坐標原點,點
在拋物線上.
(1)求拋物線的標準方程;
(2)設直線的方程為
,若直線
與拋物線交于
兩點,且以
為直徑的圓過點
,求
的值.
【答案】(1);(2)
或
.
【解析】
(1)由題意可設拋物線的標準方程為:y2=2px(p>0),把點P(1,4)代入解得p.可得拋物線C的標準方程.
(2)直線l的方程為:y=kx+1,代入拋物線方程,設A(x1,y1),B(x2,y2).由題意可得:0,可得(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=0,把根與系數的關系代入即可得出.
(1)由題意可設拋物線的標準方程為:y2=2px(p>0),把點P(1,4)代入可得:42=2p×1,解得2p=16.
∴拋物線C的標準方程為:y2=16x.
(2)直線l的方程為:y=kx+1,代入拋物線方程可得:k2x2+(2k﹣16)x+1=0,
△=64﹣16k>0,解得k<4.
設A(x1,y1),B(x2,y2),
∴,
.
,
,
由題意可得:
.
∴17k2﹣46k﹣15=0,
解得k或k=3.
科目:高中數學 來源: 題型:
【題目】一個工廠在某年連續10個月每月產品的總成本y(萬元)與該月產量x(萬件)之間有如下一組數據:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發現可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)①建立月總成本y與月產量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產量為1.98萬件時,此時產品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數據:,
,
②參考公式:相關系數,
回歸方程中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。
A. 所在平面B.
所在平面
C. 所在平面D.
所在平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 是邊長為3的正方形,
平面
,
平面
,
.
(1)證明:平面平面
;
(2)在上是否存在一點
,使平面
將幾何體
分成上下兩部分的體積比為
?若存在,求出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x<0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象如圖所示,
(1)畫出函數f(x),x∈R剩余部分的圖象,并根據圖象寫出函數f(x),x∈R的單調區間;(只寫答案)
(2)求函數f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,頂點A(3,7),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是
.
(1)求點A關于直線CD的對稱點的坐標;
(2)求頂點B、C的坐標;
(3)過A作直線,使B,C兩點到
的距離相等,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com