精英家教網 > 高中數學 > 題目詳情

【題目】下列命題中正確的個數為(

①兩個有共同始點且相等的向量,其終點可能不同;

②若非零向量共線,則、、四點共線;

③若非零向量共線,則;

④四邊形是平行四邊形,則必有

,則、方向相同或相反.

A.B.C.D.

【答案】B

【解析】

根據相等向量的定義判斷①的真假;根據共線向量的定義判斷②的真假;根據共線向量的等價條件判斷③的真假;根據相等向量的定義判斷④的真假;取判斷⑤的真假.

①相等向量是大小相等、方向相同的向量,如果兩個相等向量起點相同,則由定義知終點必相同,命題①是假命題;

②共線向量是基線平行或重合的向量,若非零向量共線且直線平行時,、、、四點不共線,命題②是假命題;

③若非零向量共線,則存在非零實數,使得,命題③是假命題;

④四邊形是平行四邊形,則,由相等向量的定義可知,命題④是真命題;

⑤若為非零向量,,則、方向無法確定,命題⑤是假命題.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點.

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點,是橢圓上位于直線兩側的動點.

①若直線的斜率為,求四邊形面積的最大值;

②當運動時,滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若無窮數列滿足:是正實數,當時,,則稱是“-數列”.已知數列是“-數列”.

(Ⅰ)若,寫出的所有可能值;

(Ⅱ)證明:是等差數列當且僅當單調遞減;

(Ⅲ)若存在正整數,對任意正整數,都有,證明:是數列的最大項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,平面ABCD⊥平面ABE,FCE的中點,且AEBE

1)求證:AE∥平面BFD

2)求證:BFAE

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求曲線在點處的切線方程;

2)若函數,求的單調區間;并證明:當時,;

3)證明:當時,函數有最小值,設最小值為,求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1),求函數的單調區間;

(2)的極小值點,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(Ⅰ)討論單調區間;

(Ⅱ)若直線是函數圖象的切線,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量cosx+sinx,1),sinx,),函數

1)若fθ)=3θ∈(0,π),求θ;

2)求函數fx)的最小正周期T及單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

1)若是偶函數,求的值;

2)若存在,使得成立,求實數的取值范圍;

3)設函數,若有零點,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视