【題目】已知四棱錐中,
底面
,
,
,
,
是
中點.
(1)求證:平面
;
(2)求直線和平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: +
=1(a>b>0)的左、右焦點分別為F1 , F2 , 點P(3,1)在橢圓上,△PF1F2的面積為2
.
(1)①求橢圓C的標準方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直線y=x+k與橢圓C相交于A,B兩點,若以AB為直徑的圓經過坐標原點,求實數k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,
,和圓:
相切,則實數
的取值范圍是( )
A. 或
B.
或
C. 或
D.
或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數為8.
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內的人數以及所有抽取學生的百米成績的中位數(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人用一網箱飼養中華鱘,研究表明:一個飼養周期,該網箱中華鱘的產量(單位:百千克)與購買飼料費用
(
)(單位:百元)滿足:
.另外,飼養過程中還需投入其它費用
.若中華鱘的市場價格為
元/千克,全部售完后,獲得利潤
元.
(1)求關于
的函數關系式;
(2)當為何值時,利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,設四棱柱的外接球的球心為O,動點P在正方形ABCD的邊上,射線OP交球O的表面于點M,現點P從點A出發,沿著A→B→C→D→A運動一次,則點M經過的路徑長為( )
A.
B.2 π
C.
D.4 π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且
+…+
=2.則當a2016﹣4a1取得最小值時,a1的值為= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市地產數據研究所的數據顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調控措施,10月份開始房價得到很好的抑制.
(1)地產數據研究所發現,3月至7月的各月均價(萬元/平方米)與月份
之間具有較強的線性相關關系,試求
關于
的回歸直線方程;
(2)若政府不調控,按照3月份至7月份房價的變化趨勢預測12月份該市新建住宅的銷售均價.
參考數據:,
,
;
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com