【題目】已知函數f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求函數f(x)的單調區間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.
【答案】解:(Ⅰ)求導函數,可得f′(x)=ex+2ax﹣e
∵曲線y=f(x)在點(1,f(1))處的切線平行于x軸,
∴k=2a=0,∴a=0
∴f(x)=ex﹣ex,f′(x)=ex﹣e
令f′(x)=ex﹣e<0,可得x<1;令f′(x)>0,可得x>1;
∴函數f(x)的單調減區間為(﹣∞,1),單調增區間為(1,+∞)
(Ⅱ)設點P(x0,f(x0)),曲線y=f(x)在點P處的切線方程為y=f′(x0)(x﹣x0)+f(x0)
令g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0)
∵曲線在該點處的切線與曲線只有一個公共點P,∴g(x)有唯一零點
∵g(x0)=0,g′(x)=
(i)若a≥0,當x>x0時,g′(x)>0,∴x>x0時,g(x)>g(x0)=0
當x<x0時,g′(x)<0,∴x<x0時,g(x)>g(x0)=0,故g(x)只有唯一零點x=x0,由P的任意性a≥0不合題意;
(ii)若a<0,令h(x)= ,則h(x0)=0,h′(x)=ex+2a
令h′(x)=0,則x=ln(﹣2a),∴x∈(﹣∞,ln(﹣2a)),h′(x)<0,函數單調遞減;x∈(ln(﹣2a),+∞),h′(x)>0,函數單調遞增;
①若x0=ln(﹣2a),由x∈(﹣∞,ln(﹣2a)),g′(x)>0;x∈(ln(﹣2a),+∞),g′(x)>0,∴g(x)在R上單調遞增
∴g(x)只有唯一零點x=x0;
②若x0>ln(﹣2a),由x∈(ln(﹣2a),+∞),h(x)單調遞增,且h(x0)=0,則當x∈(ln(﹣2a),x0),g′(x)<0,g(x)>g(x0)=0
任取x1∈(ln(﹣2a),x0),g(x1)>0,
∵x∈(﹣∞,x1),∴g(x)<ax2+bx+c,其中b=﹣e﹣f′(x0).c=
∵a<0,∴必存在x2<x1,使得
∴g(x2)<0,故g(x)在(x2,x1)內存在零點,即g(x)在R上至少有兩個零點;
③若x0<ln(﹣2a),同理利用 ,可得g(x)在R上至少有兩個零點;
綜上所述,a<0,曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P(ln(﹣2a),f(ln(﹣2a)))
【解析】(Ⅰ)求導函數,利用曲線y=f(x)在點(1,f(1))處的切線平行于x軸,可求a的值,令f′(x)=ex﹣e<0,可得函數f(x)的單調減區間;令f′(x)>0,可得單調增區間;(Ⅱ)設點P(x0,f(x0)),曲線y=f(x)在點P處的切線方程為y=f′(x0)(x﹣x0)+f(x0),令g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),曲線在該點處的切線與曲線只有一個公共點P等價于g(x)有唯一零點,求出導函數,再進行分類討論:(1)若a≥0,g(x)只有唯一零點x=x0,由P的任意性a≥0不合題意(2)若a<0,令h(x)= ,則h(x0)=0,h′(x)=ex+2a,可得函數的單調性,進而可研究g(x)的零點,由此可得結論.
【考點精析】關于本題考查的利用導數研究函數的單調性,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=3,an+1=2an﹣n+1,數列{bn}滿足b1=2,bn+1=bn+an﹣n.
(1)證明:{an﹣n}為等比數列;
(2)數列{cn}滿足 ,求數列{cn}的前n項和Tn , 求證:Tn
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}滿足:a1=1,an+1=3an , n∈N* . 設Sn為數列{bn}的前n項和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)設cn=bnlog3an , 求數列{cn}的前n項和Tn;
(Ⅲ)證明:對任意n∈N*且n≥2,有 +
+…+
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的可導函數f(x)的導函數為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數,f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調區間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實數a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據國家環保部新修訂的《環境空氣質量標準》規定:居民區PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環保局隨機抽取了一居民區2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監測數據,數據統計如表:
組別 | PM2.5濃度(微克/立方米) | 頻數(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)將這20天的測量結果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求頻率分布直方圖中a的值;
②求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區的環境質量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區PM2.5的24小時平均濃度符合環境空氣質量標準的天數為X,求X的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足:a1=1,an+1﹣ansin2θ=sin2θcos2nθ.
(Ⅰ)當θ= 時,求數列{an}的通項公式;
(Ⅱ)在(Ⅰ)的條件下,若數列{bn}滿足bn=sin ,Sn為數列{bn}的前n項和,求證:對任意n∈N* , Sn<3+
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com