【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點,F為線段PB上的一點,∠CDP=120°,AD=3,AP=5,.
(Ⅰ)試確定點F的位置,使得直線EF∥平面PDC;
(Ⅱ)若PB=3BF,求直線AF與平面PBC所成角的正弦值.
【答案】(Ⅰ)當點F為BP中點時,使得直線EF∥平面PDC;(Ⅱ).
【解析】
(Ⅰ)設F為BP中點,取AP中點G,連結EF、EG、FG,推導出GF∥AB∥CD,EG∥DP,從而平面GEF∥平面PDC,進而當點F為BP中點時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點,DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標系,求得平面PBC的一個法向量,的坐標,代入公式sinθ
求解.
(Ⅰ)設F為BP中點,取AP中點G,連結EF、EG、FG,
∵AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點,
∴GF∥AB∥CD,EG∥DP,
∵EG∩FG=G,DP∩CD=D,∴平面GEF∥平面PDC,
∵EF平面GEF,
∴當點F為BP中點時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點,DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標系,
∵E為AD的中點,F為線段PB上的一點,∠CDP=120°,AD=3,AP=5,.
∴cos120°,解得CD=2,
所以A(0,0,3),B(2,0,3),P(﹣2,2,0),C(2,0,0),
設F(a,b,c),由PB=3BF,得,
即(a﹣2,b,c﹣3)(﹣8,2
,﹣3),
解得a,b
,c=2,∴F(
,
,2),
(
,﹣1),
(0,0,3),
(﹣4,2
,0),
設平面PBC的一個法向量(x,y,z),
則,取x=1,得
(1,
,0),
設直線AF與平面PBC所成角為θ,
則直線AF與平面PBC所成角的正弦值為:
.
科目:高中數學 來源: 題型:
【題目】已知函數,
,
(1)若,且
在其定義域上存在單調遞減區間,求實數
的取值范圍;
(2)設函數,
,若
恒成立,求實數
的取值范圍;
(3)設函數的圖象
與函數
的圖象
交于點
、
,過線段
的中點作
軸的垂線分別交
,
于點
、
,證明:
在點
處的切線與
在點
處的切線不平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,在高三年級中隨機選取名學生進行跟蹤問卷,其中每周線上學習數學時間不少于
小時的有
人,在這
人中分數不足
分的有
人;在每周線上學習數學時間不足于
小時的人中,在檢測考試中數學平均成績不足
分的占
.
(1)請完成列聯表;并判斷是否有
的把握認為“高三學生的數學成績與學生線上學習時間有關”;
分數不少于 | 分數不足 | 合計 | |
線上學習時間不少于 | |||
線上學習時間不足 | |||
合計 |
(2)在上述樣本中從分數不足于分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于
小時和線上學習時間不足
小時的學生共
名,若在這
名學生中隨機抽取
人,求這
人每周線上學習時間都不足
小時的概率.(臨界值表僅供參考)
(參考公式,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)將的方程化為普通方程,將
的方程化為直角坐標方程;
(2)已知直線的參數方程為
(
,
為參數,且
),
與
交于點
,
與
交于點
,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數方程為
(
為參數),以坐標原點為極點,以
軸的正半軸為極軸建立極坐標系,且長度單位相同.
(1)求圓的極坐標方程;
(2)若直線:
(
為參數)被圓
截得的弦長為2,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面平面
,
為矩形,
為等腰梯形,
,
分別為
,
中點,
,
,
.
(1)證明:平面
;
(2)求二面角的正弦值;
(3)線段上是否存在點
,使得
平面
,若存在求出
的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若,求
的極坐標方程;
(2)若與
恰有4個公共點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別為B1C1,C1D1的中點,點P是上底面A1B1C1D1內一點,且AP∥平面EFDB,則cos∠APA1的最小值是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com