精英家教網 > 高中數學 > 題目詳情

【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個結論:
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角為60°;
其中正確結論是(寫出所有正確結論的序號)

【答案】①②④
【解析】解:作出如圖的圖象,其中A﹣BD﹣C=90°,E是BD的中點,可以證明出∠AED=90°即為此直二面角的平面角
對于命題①,由于BD⊥面AEC,故AC⊥BD,此命題正確;
對于命題②,在等腰直角三角形AEC中可以解出AC等于正方形的邊長,故△ACD是等邊三角形,此命題正確;
對于命題③AB與平面BCD所成的線面角的平面角是∠ABE=45°,故AB與平面BCD成60°的角不正確;
對于命題④可取AD中點F,AC的中點H,連接EF,EH,FH,由于EF,FH是中位線,可證得其長度為正方形邊長的一半,而EH是直角三角形的中線,其長度是AC的一半即正方形邊長的一半,故△EFH是等邊三角形,由此即可證得AB與CD所成的角為60°;
綜上知①②④是正確的
所以答案是①②④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于函數,若在定義域內存在實數,滿足,則稱為“類函數”.

(1)已知函數,試判斷是否為“類函數”?并說明理由;

(2)設是定義在上的“類函數”,求是實數的最小值;

(3)若 為其定義域上的“類函數”,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據氣象部門預報,在距離碼頭A南偏東45°方向400千米B處的臺風中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風中心為圓心,距臺風中心100 千米以內的地區都將受到臺風影響.據以上預報估計,從現在起多長時間后,碼頭A將受到臺風的影響?影響時間大約有多長?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加高三期中考試的學生中抽出50名學生,并統計了他們的數學成績(成績均為整數且滿分為100分),數學成績分組及樣本頻率分布表如下:

分組

頻數

頻率

[40,50)

2

0.04

[50,60)

3

0.06

[60,70)

14

0.28

[70,80)

15

[80,90)

0.24

[90,100]

4

0.08

合計


(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學,已知甲同學的成績為42分,乙同學的成績為95分,求甲、乙兩同學恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4 ,M、N分別是AB、CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB、CD可能相交于點M;
②弦AB、CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}是公比大于1的等比數列,Sn為數列{an}的前n項和,已知S3=7,且a1+3,3a2 , a3+4構成等差數列.
(1)求數列{an}的通項公式;
(2)求數列{an+log2an}(n∈N*)的前10項和T10

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知n∈N* , 設Sn是單調遞減的等比數列{an}的前n項和,a1= 且S2+a2 , S4+a4 , S3+a3成等差數列.
(1)求數列{an}的通項公式;
(2)記數列{nan}的前n項和為Tn , 求證:對于任意正整數n,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视