【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個結論:
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角為60°;
其中正確結論是(寫出所有正確結論的序號)
【答案】①②④
【解析】解:作出如圖的圖象,其中A﹣BD﹣C=90°,E是BD的中點,可以證明出∠AED=90°即為此直二面角的平面角
對于命題①,由于BD⊥面AEC,故AC⊥BD,此命題正確;
對于命題②,在等腰直角三角形AEC中可以解出AC等于正方形的邊長,故△ACD是等邊三角形,此命題正確;
對于命題③AB與平面BCD所成的線面角的平面角是∠ABE=45°,故AB與平面BCD成60°的角不正確;
對于命題④可取AD中點F,AC的中點H,連接EF,EH,FH,由于EF,FH是中位線,可證得其長度為正方形邊長的一半,而EH是直角三角形的中線,其長度是AC的一半即正方形邊長的一半,故△EFH是等邊三角形,由此即可證得AB與CD所成的角為60°;
綜上知①②④是正確的
所以答案是①②④
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數,試判斷
是否為“
類函數”?并說明理由;
(2)設是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據氣象部門預報,在距離碼頭A南偏東45°方向400千米B處的臺風中心正以20千米每小時的速度向北偏東15°方向沿直線移動,以臺風中心為圓心,距臺風中心100 千米以內的地區都將受到臺風影響.據以上預報估計,從現在起多長時間后,碼頭A將受到臺風的影響?影響時間大約有多長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三期中考試的學生中抽出50名學生,并統計了他們的數學成績(成績均為整數且滿分為100分),數學成績分組及樣本頻率分布表如下:
分組 | 頻數 | 頻率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合計 | ③ | ④ |
(1)請把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學,已知甲同學的成績為42分,乙同學的成績為95分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的參數方程為
,曲線
的極坐標方程為
.
(1)寫出直線的直角坐標方程和曲線
的普通方程;
(2)求直線與曲線
的交點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長度分別為2 和4
,M、N分別是AB、CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB、CD可能相交于點M;
②弦AB、CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}是公比大于1的等比數列,Sn為數列{an}的前n項和,已知S3=7,且a1+3,3a2 , a3+4構成等差數列.
(1)求數列{an}的通項公式;
(2)求數列{an+log2an}(n∈N*)的前10項和T10 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知n∈N* , 設Sn是單調遞減的等比數列{an}的前n項和,a1= 且S2+a2 , S4+a4 , S3+a3成等差數列.
(1)求數列{an}的通項公式;
(2)記數列{nan}的前n項和為Tn , 求證:對于任意正整數n, .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com