精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數,使得,求a的取值范圍.

【答案】1;(2

【解析】試題分析:(1)先求出,設出切點,利用切線方程求得,進而求得的值;(2)問題轉化為存在唯一的整數,使的最小值小于零,利用導數求其極值,數形結合可得 ,且,即可得的取值范圍.

試題解析:

1)函數的定義域為,,

設切點,則切線的斜率,

所以切線為,

因為恒過點,斜率為,且為的一條切線,

所以,

所以,所以

2)令,,

,

時,,,

,上遞增,

,又

則存在唯一的整數使得,即

時,為滿足題意,上不存在整數使,

上不存在整數使,

時,,

上遞減,

時,

,

時,,不符合題意.

綜上所述,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當,求函數在區間上的最大值與最小值

(2)若在上存在,使得成立的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是公差為3的等差數列,數列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn

分別求數列{an},{bn}的通項公式;

令cn= an bn,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,其中均為實數.

I的極值;

II,,求證:對,恒成立.

III,若對給定的,在區間上總存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1時,證明:在定義域上為減函數;

2時,討論函數的零點情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】命題:已知實數,若關于不等式非空解集,則,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正三棱柱(側棱垂直于底面,且底面是正三角形)中,是棱上一點.

(1)若分別是的中點,求證:平面;

(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,已知,,設的前項和

(1)求證:數列是等差數列;

(2)

(3)是否存在正整數,,,使成等差數列?若存在,求出,的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)設函數,其中,曲線過點,且在點處的切線方程為

I)求的值;

II)證明:當時,

III)若當時,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视