【題目】已知函數f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,M、N兩點之間的距離為13,且f(3)=0,若將函數f(x)的圖象向右平移t(t>0)個單位長度后所得函數的圖象關于坐標原點對稱,則t的最小值為( )
A.7
B.8
C.9
D.10
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx﹣ax(a∈R).
(1)若直線y=3x﹣1是函數f(x)圖象的一條切線,求實數a的值;
(2)若函數f(x)在[1,e2]上的最大值為1﹣ae(e為自然對數的底數),求實數a的值;
(3)若關于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且僅有唯一的實數根,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,圓C1和C2的參數方程分別是 (φ為參數)和
(φ為參數),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區農村居民家庭人均純收入的變化情況,并預測該地區2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點H(0,﹣8),點P在x軸上,動點F滿足PF⊥PH,且PF與y軸交于點Q,Q為線段PF的中點.
(1)求動點F的軌跡E的方程;
(2)點D是直線l:x﹣y﹣2=0上任意一點,過點D作E的兩條切線,切點分別為A、B,取線段AB的中點,連接DM交曲線E于點N,求證:直線AB過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,P點的極坐標為 ,在平面直角坐標系中,直線l經過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標方程和直線l的參數方程;
(Ⅱ)設直線l與曲線C相交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D
在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com