【題目】設函數是定義在
上的函數,并且滿足下面三個條件:①對任意正數
,都有
;②當
時,
;③
.
(1)求,
的值;
(2)證明在
上是減函數;
(3)如果不等式成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數a,b間滿足的等量關系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若二次函數f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數的f(x)的一個零點為1. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)對任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以
元/個的價格出售.如果當天賣不完,剩下的面包以
元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以
(單位:個,
)表示面包的需求量,
(單位:元)表示利潤.
(Ⅰ)求關于
的函數解析式;
(Ⅱ)根據直方圖估計利潤不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過點A(0,4),B(1,0),C(5,0),其對稱軸與x 軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連結AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ (Ⅰ)判斷函數的奇偶性,并加以證明;
(Ⅱ)用定義證明f(x)在(0,1)上是減函數;
(Ⅲ)函數f(x)在(﹣1,0)上是單調增函數還是單調減函數?(直接寫出答案,不要求寫證明過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若,討論函數
的單調性;
(2)是否存在實數,對任意
,
, 有
恒成立,若存在,求出
的范圍,若不存在,請說明理由;
(3)記,如果
是函數
的兩個零點,且
,
是
的導函數,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com