【題目】如圖,等邊三角形的中線
與中位線
相交于
,已知
是
繞
旋轉過程中的一個圖形,給出以下四個命題:①
平面
;②平面
平面
;③動點
在平面
上的射影在線段
上;④異面直線
與
不可能垂直. 其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】設橢圓C的兩個焦點是F1、F2 , 過F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】語句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語句q:曲線 +
=1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數在定義域內存在區間
,使得該函數在區間
上的值域為
,則稱函數
是該定義域上的“和諧函數”.
(1)求證:函數是“和諧函數”;
(2)若函數是“和諧函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在實數集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},則A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,圓
.
(Ⅰ)若直線過點
且到圓心
的距離為1,求直線
的方程;
(Ⅱ)設過點的直線
與圓
交于
兩點(
的斜率為正),當
時,求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種零件,每個零件的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設一次訂購量為個,零件的實際出廠單價為
元,寫出函數
的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元? (工廠售出一個零件的利潤=實際出廠單價-單件成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為常函數)是奇函數.
(1)判斷函數在
上的單調性,并用定義法證明你的結論;
(2)若對于區間上的任意
值,使得
不等式恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com