【題目】下列命題正確的是( )
A.復數z1,z2的模相等,則z1,z2是共軛復數
B.z1,z2都是復數,若z1+z2是虛數,則z1不是z2的共軛復數
C.復數z是實數的充要條件是z=(
是z的共軛復數)
D.已知復數z1=-1+2i,z2=1-i,z3=3-2i(i是虛數單位),它們對應的點分別為A,B,C,O為坐標原點,若(x,y∈R),則x+y=1
科目:高中數學 來源: 題型:
【題目】據統計,某地區植被覆蓋面積公頃
與當地氣溫下降的度數
之間呈線性相關關系,對應數據如下:
| 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
請用最小二乘法求出y關于x的線性回歸方程;
根據
中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少
?
參考公式:線性回歸方程;其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在15~65歲的人群中隨機抽取n人進行問卷調查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:
調查問題是“雙峰山國家森林公園是幾A級旅游景點?”每組中回答正確的人數及回答正確的人數占本組的頻率的統計結果如下表.
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | y | 0.9 |
第4組 | [45,55) | 9 | a |
第5組 | [55,65] | 7 | b |
(1)分別求出n,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列結論:
①的單調遞減區間;
②當時,直線y=k與y=f (x)的圖象有兩個不同交點;
③函數y=f(x)的圖象與的圖象沒有公共點;
④當時,函數
的最小值為2.
其中正確結論的序號是_________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(Ⅰ)若曲線與曲線
在它們的某個交點處具有公共切線,求
的值;
(Ⅱ)若存在實數使不等式
的解集為
,求實數
的取值范圍
(Ⅲ)若方程有三個不同的解
,且它們可以構成等差數列,寫出實數
的值(只需寫出結果).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐P-A BC的四個頂點都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA =3,AB=BC=2,則球O的表面積為( )
A.13π B.17π C.52π D.68π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com