【題目】某單位科技活動紀念章的結構如圖所示,O是半徑分別為1cm,2cm的兩個同心圓的圓心,等腰△ABC的頂點A在外圓上,底邊BC的兩個端點都在內圓上,點O,A在直線BC的同側.若線段BC與劣弧所圍成的弓形面積為S1,△OAB與△OAC的面積之和為S2, 設∠BOC=2
.
(1)當時,求S2﹣S1的值;
(2)經研究發現當S2﹣S1的值最大時,紀念章最美觀,求當紀念章最美觀時,cos的值.(求導參考公式:(sin2x)'=2cos2x,(cos2x)'=﹣2sin2x)
科目:高中數學 來源: 題型:
【題目】甲、乙兩個班級(各40名學生)進行一門考試,為易于統計分析,將甲、乙兩個班學生的成績分成如下四組:,
,
,
,并分別繪制了如下的頻率分布直方圖:
規定:成績不低于90分的為優秀,低于90分的為不優秀.
(1)根據這次抽查的數據,填寫下面的列聯表:
優秀 | 不優秀 | 合計 | |
甲班 | |||
乙班 | |||
合計 |
(2)根據(1)中的列聯表,能否有的把握認為成績是否優秀與班級有關?
附:臨界值參考表與參考公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點的直線l與拋物線
交于A,B兩點,以AB為直徑作圓,記為
,
與拋物線C的準線始終相切.
(1)求拋物線C的方程;
(2)過圓心M作x軸垂線與拋物線相交于點N,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級為了解學生在家參加線上教學的學習情況,對高三年級進行了網上數學測試,他們的成績在80分到150分之間,根據統計數據得到如下頻率分布直方圖:
若成績在區左側,認為該學生屬于“網課潛能生”,成績在區間
之間,認為該學生屬于“網課中等生”,成績在區間
右側,認為該學生屬于“網課優等生”.
(1)若小明的測試成績為100分,請判斷小明是否屬于“網課潛能生”,并說明理由:(參考數據:計算得)
(2)該校利用分層抽樣的方法從樣本的,
兩組中抽出6人,進行教學反饋,并從這6人中再抽取2人,贈送一份學習資料,求獲贈學習資料的2人中恰有1人成績超過90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點到直線
的距離為
,過點
的直線
與
交于
、
兩點.
(1)求拋物線的準線方程;
(2)設直線的斜率為
,直線
的斜率為
,若
,且
與
的交點在拋物線
上,求直線
的斜率和點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線
的焦點為
,準線與
軸的交點為
.過點
的直線與拋物線相交于
、
兩點,
、
分別與
軸相交于
、
兩點,當
軸時,
.
(1)求拋物線的方程;
(2)設的面積為
,
面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:,
分別是其左、右焦點,過
的直線l與橢圓C交于A,B兩點,且橢圓C的離心率為
,
的內切圓面積為
,
.
(I)求橢圓C的方程;
(II)若時,求直線l的方程
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率與雙曲線
的離心率互為倒數,
分別為橢圓的左、右頂點,且
.
(1)求橢圓的方程;
(2)已知過左頂點的直線
與橢圓
另交于點
,與
軸交于點
,在平面內是否存在一定點
,使得
恒成立?若存在,求出該點的坐標,并求
面積的最大值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com