【題目】為了解高中學生對數學課是否喜愛是否和性別有關,隨機調查220名高中學生,將他們的意見進行了統計,得到如下的列聯表.
喜愛數學課 | 不喜愛數學課 | 合計 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合計 | 160 | 60 | 220 |
(1)根據上面的列聯表判斷,能否有的把握認為“喜愛數學課與性別”有關;
(2)為培養學習興趣,從不喜愛數學課的學生中進行進一步了解,從上述調查的不喜愛數學課的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1名“男生”的概率.
參考公式:.
P( | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
科目:高中數學 來源: 題型:
【題目】為準確把握市場規律,某公司對其所屬商品售價進行市場調查和模型分析,發現該商品一年內每件的售價按月近似呈的模型波動(
為月份),已知3月份每件售價達到最高90元,直到7月份每件售價變為最低50元.則根據模型可知在10月份每件售價約為_____.(結果保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環境,某工廠在國家的號召下,把廢棄物回收轉化為某種產品,經測算,處理成本(萬元)與處理量
(噸)之間的函數關系可近似的表示為:
,且每處理一噸廢棄物可得價值為
萬元的某種產品,同時獲得國家補貼
萬元.
(1)當時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數方程是(t為參數),以O為極點,x軸正半軸為極軸的極坐標系中,圓C的極坐標方程為
.
(1)求直線l的普通方程和圓C的直角坐標方程;
(2)由直線l上的點向圓C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.
(1)證明:AP∥平面EBD;
(2)證明:BE⊥PC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網絡知識競賽活動.現從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學生的平均成績(同一組中的數據用該組區間的中點值為代表);
(2)在抽取的100名學生中,規定:比賽成績不低于80分為“優秀”,比賽成績低于80分為“非優秀”.請將下面的2×2列聯表補充完整,并判斷是否有99%的把握認為“比賽成績是否優秀與性別有關”?
優秀 | 非優秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數據:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點P(4,0)的動直線與拋物線C:交于點A,B,且
(點O為坐標原點).
(1)求拋物線C的方程;
(2)當直線AB變動時,x軸上是否存在點Q使得點P到直線AQ,BQ的距離相等,若存在,求出點Q坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com