【題目】已知函數 .
(1)求f(x)單調遞減區間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.
【答案】
(1)解:
= ﹣
+
sin2x
= sin2x﹣
cos2x
=sin(2x﹣ ),
令 +2kπ≤2x﹣
≤
+2kπ,k∈Z,
解得 +kπ≤x≤
+kπ,k∈Z;
∴f(x)的單調遞減區間是
(2)解:△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,
∴b2+c2>bc+a2,
即b2+c2﹣a2>bc,
∴cosA= >
,
∴0<A< ;
∴﹣ <2A﹣
<
,
∴﹣ <sin(2A﹣
)<1,
∴f(A)的取值范圍是(﹣ ,1)
【解析】(1)化簡函數f(x)為正弦型函數,根據正弦函數的單調性求出f(x)的單調減區間;(2)利用正弦定理求出A的取值范圍,再求f(A)的取值范圍即可.
【考點精析】解答此題的關鍵在于理解正弦函數的單調性的相關知識,掌握正弦函數的單調性:在上是增函數;在
上是減函數.
科目:高中數學 來源: 題型:
【題目】已知x0∈R使得關于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求滿足條件的實數t集合T;
(2)若m>1,n>1,且對于t∈T,不等式log3mlog3n≥t恒成立,試求m+n的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項a1 , a2 , …,an(n∈N*)組成集合An={a1 , a2 , …,an},從集合An中任取k(k=1,2,3,…,n)個數,其所有可能的k個數的乘積的和為Tk(若只取一個數,規定乘積為此數本身),例如:對于數列{2n﹣1},當n=1時,A1={1},T1=1;n=2時,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求當n=3時,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},證明:n=k時集合Ak的Tm與n=k+1時集合Ak+1的Tm(為了以示區別,用Tm′表示)有關系式Tm′=(2k+1﹣1)Tm﹣1+Tm , 其中m,k∈N*,2≤m≤k;
(3)對于(2)中集合An . 定義Sn=T1+T2+…+Tn , 求Sn(用n表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=|2x﹣1|+|5x﹣1|
(1)求f(x)>x+1的解集;
(2)若m=2﹣n,對m,n∈(0,+∞),恒有 成立,求實數x的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果一個數列從第2項起,每一項與它前一項的差都大于2,則稱這個數列為“H型數列”.
(1)若數列{an}為“H型數列”,且a1= ﹣3,a2=
,a3=4,求實數m的取值范圍;
(2)是否存在首項為1的等差數列{an}為“H型數列”,且其前n項和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項公式;若不存在,請說明理由.
(3)已知等比數列{an}的每一項均為正整數,且{an}為“H型數列”,bn= an , cn=
,當數列{bn}不是“H型數列”時,試判斷數列{cn}是否為“H型數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}是集合{x|x=3s+3t , s<t且s,t∈N}中所有的數從小到大排列成的數列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數列{an}中各項按照上小下大,左小右大的原則排成如圖的等腰直角三角形數表,則a15的值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com