精英家教網 > 高中數學 > 題目詳情

【題目】,.

(1)令,求的單調區間;

(2)已知處取得極大值.求實數的取值范圍.

【答案】(1)當時,函數單調遞增區間為時,函數單調遞增區間為,單調遞減區間為;(2)

【解析】

試題分析:(1)先求出的解析式,然后求函數的導數,利用函數單調性和導數之間的關系,即可求出的單調區間;(2)分別討論的取值范圍,根據函數極值的定義,進行驗證可得結論.

試題解析:(1),,則,

時,時,,當時,時,,

時,,所以當時,函數單調遞增區間為;

時,函數單調遞增區間為,單調遞減區間為.(5分)

(2)由(1)知,.

時,時,時,,

所以處取得極小值,不合題意.

時,,由(1)知內單調遞增,

時,,時,,所以處取得極小值,不合題意.

時,即時,內單調遞增,在內單調遞減,

所以當時,,單調遞減,不合題意.

時,即,當時,單調遞增,

時,單調遞減,所以處取得極大值,合題意.

綜上可知,實數的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中,根據下列條件解三角形,則其中有二個解的是

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的離心率,長軸長為4.

(1)求橢圓的方程;

(2)設動直線與橢圓有且只有一個公共點,過右焦點作直線與直線交與點,且.求證:點在定直線上,并求出定直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金萬元的關系分別為其中m,a,b都為常數,函數對應的曲線如圖所示.

1求函數的解析式;

2若該商場一共投資10萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數上是奇函數,且對任意都有,當時,

)求的值;

)判斷的單調性,并證明你的結論;

)求不等式的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,,兩點的坐標分別為,動點滿足:直線與直線的斜率之積為.

(1)求動點的軌跡方程;

(2)過點作兩條互相垂直的射線,與(1)的軌跡分別交于,兩點,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象經過點(1,1),

(1)求函數的解析式;

(2)判斷函數在(0,+)上的單調性并用定義證明;

(3)求在區間上的值域;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果命題p∨q為真命題,p∧q為假命題,那么( )

A. 命題p,q均為真命題 B. 命題p,q均為假命題

C. 命題p,q有且只有一個為真命題 D. 命題p為真命題,q為假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

)求的單調區間;

)求的零點個數;

)證明:曲線沒有經過原點的切線.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视