精英家教網 > 高中數學 > 題目詳情

【題目】某地最近十年糧食需求量逐年上升,下表是部分統計數據

(1)利用所給數據求年需求量與年份之間的回歸直線方程;

(2)利用(1)計算2002年和2006年糧食需求量的殘差;

(3)利用(1)中所求出的直線方程預測該地2012年的糧食需求量。

公式:

【答案】(1);(2)見解析;(3)萬噸

【解析】

1)由所給數據看出,年需求量與年份之間是近似直線上升,利用回歸直線方程,對數據預處理,求出預處理后的回歸直線方程,從而求出對應的回歸直線方程;

2)利用殘差公式求得結果;

3)利用所求的回歸直線方程,計算2012年的糧食需求量即可.

(1)由題意得,,

,

,

∴年需求量與年份之間的回歸直線方程為.

(2)時,

時,

利用殘差公式求得殘差分別為1.8和-3.2;

(3)當時代入上式可得 .

∴可預測該地2012年的糧食需求量為萬噸.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為

1)求頻率分布直方圖中的值;

2)估計該企業的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,,分別為線段上的點,且,.

(1)證明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義域和值域均為[-aa]的函數y=y=gx)的圖象如圖所示,其中acb0,給出下列四個結論正確結論的是(  

A.方程f[gx]=0有且僅有三個解B.方程g[fx]=0有且僅有三個解

C.方程f[fx]=0有且僅有九個解D.方程g[gx]=0有且僅有一個解

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,為棱的中點.

(Ⅰ)證明:;

Ⅱ)若點為棱上一點,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某周末,鄭州方特夢幻王國匯聚了八方來客. 面對該園區內相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同. 某統計機構對園區內的100位游客(這些游客只在兩個主題公園中二選一)進行了問卷調查. 調查結果顯示,在被調查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20人.

(1)根據題意,請將下面的列聯表填寫完整;

(2)根據列聯表的數據,判斷是否有99%的把握認為選擇哪個主題公園與年齡有關.

附參考公式與表:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)||,實數mn滿足0mn,且f(m)f(n),若f(x)[m2,n]上的最大值為2,則________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视