精英家教網 > 高中數學 > 題目詳情
的定義域為,恒成立,,則解集為(   )
A.B.C.D.
B

試題分析:構造函數,則,所以函數在定義域上單調遞增,又,所以解集為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,
(Ⅰ)若,求函數的極值;
(Ⅱ)若函數上單調遞減,求實數的取值范圍;
(Ⅲ)在函數的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知R,函數e
(1)若函數沒有零點,求實數的取值范圍;
(2)若函數存在極大值,并記為,求的表達式;
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

預計某地區明年從年初開始的前個月內,對某種商品的需求總量 (萬件)近似滿足:N*,且
(1)寫出明年第個月的需求量(萬件)與月份 的函數關系式,并求出哪個月份的需求量超過萬件;
(2)如果將該商品每月都投放到該地區萬件(不包含積壓商品),要保證每月都滿足供應, 應至少為多少萬件?(積壓商品轉入下月繼續銷售)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)求函數的單調區間;
(Ⅱ)設,若在上至少存在一點,使得成立,求的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數   
(Ⅰ)若時有極值,求實數的值和的單調區間;
(Ⅱ)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

定義:若存在常數,使得對定義域內的任意兩個,均有 成立,則稱函數在定義域上滿足利普希茨條件.若函數滿足利普希茨條件,則常數的最小值為        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是周期為的函數,當x∈()時,
A.c<b<aB.b<c<aC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數在區間內零點的個數為       

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视