【題目】如圖,橢圓:
與圓
:
相切,并且橢圓
上動點與圓
上動點間距離最大值為
.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線
,
,
與
交于
兩點,
與圓
的另一交點為
,求
面積的最大值,并求取得最大值時直線
的方程.
【答案】(1);(2)面積的最大值為
,此時直線
的方程為
.
【解析】
(1)由題意可得b=1,a﹣1,即可得到橢圓的方程;(2)設A(x1,y1),B(x2,y2),根據l2⊥l1,可設直線l1,l2的方程,分別與橢圓、圓的方程聯立即可得可得出|AB|、|MN|,即可得到三角形ABC的面積,利用基本不等式的性質即可得出其最大值.
(1)橢圓E與圓O:x2+y2=1相切,知b2=1;
又橢圓E上動點與圓O上動點間距離最大值為,即橢圓中心O到橢圓最遠距離為
,
得橢圓長半軸長,即
;
所以橢圓E的方程:
(2)①當l1與x軸重合時,l2與圓相切,不合題意.
②當l1⊥x軸時,M(﹣1,0),l1:x=1,,此時
.…(6分)
③當l1的斜率存在且不為0時,設l1:x=my+1,m≠0,則,
設A(x1,y1),B(x2,y2),由得,(2m2+3)y2+4my﹣1=0,
所以,
所以.
由得,
,解得
,
所以,
所以
, 因為
,
所以
,
當且僅當時取等號.所以
(
)
綜上,△ABM面積的最大值為,此時直線l1的方程為
.
科目:高中數學 來源: 題型:
【題目】某運輸公司有名駕駛員和
名工人,有
輛載重量為
噸的甲型卡車和
輛載重量為
噸的乙型卡車.某天需運往
地至少
噸的貨物,派用的車需滿載且只運送一次.派用的每輛甲型卡車需配
名工人,運送一次可得利潤
元:派用的每輛乙型卡車需配
名工人,運送一次可得利潤
元,該公司合理計劃當天派用兩類卡車的車輛數,可得的最大利潤多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某水果種植基地引進一種新水果品種,經研究發現該水果每株的產量(單位:
)和與它“相近”的株數
具有線性相關關系(兩株作物“相近”是指它們的直線距離不超過
),并分別記錄了相近株數為0,1,2,3,4時每株產量的相關數據如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產量關于它“相近”株數
的回歸方程;
(2)該種植基地在如圖所示的長方形地塊的每個格點(橫縱直線的交點)處都種了一株該種水果,其中每個小正方形的面積都為,現從所種的該水果中隨機選取一株,試根據(1)中的回歸方程,預測它的產量的平均數.
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列四個命題:
①“若,則x,y互為倒數”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若,則
有實根”的逆否命題;
④“若,則
”的逆命題。
其中真命題是( )
A.①②④B.②③④C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|+3x,其中a>0.
(1)當a=1時,求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
是邊長為2的正三角形,
,E、F、H分別為AP、AB、AC的中點,PF交BE于點M,CF交BH于點N,
,
.
求證:
平面BEH;
求證:
;
求直線PA與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著計算機的出現,圖標被賦予了新的含義,又有了新的用武之地.在計算機應用領域,圖標成了具有明確指代含義的計算機圖形.如圖所示的圖標是一種被稱之為“黑白太陽”的圖標,該圖標共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環部分,大圓半徑為3,小圓半徑為2;第三部分為圓環內部的白色區域.在整個“黑白太陽”圖標中隨機取一點,則此點取自圖標第三部分的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以直角坐標系的原點
為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程是:
(1)求曲線的普通方程和直線
的直角坐標方程.
(2)點是曲線
上的動點,求點
到直線
距離的最大值與最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com