【題目】已知直線是雙曲線
的一條漸近線,點
都在雙曲線
上,直線
與
軸相交于點
,設坐標原點為
.
(1)求雙曲線的方程,并求出點
的坐標(用
表示);
(2)設點關于
軸的對稱點為
,直線
與
軸相交于點
.問:在
軸上是否存在定點
,使得
?若存在,求出點
的坐標;若不存在,請說明理由.
(3)若過點的直線
與雙曲線
交于
兩點,且
,試求直線
的方程.
【答案】(1);
(2)存在定點
,其坐標為
或
(3)
【解析】
(1)求得雙曲線的漸近線方程,可得,由題意可得
,
,可得雙曲線的方程,求出直線
的方程,可令
,求得
的坐標;(2)求得對稱點
的坐標,直線
方程,令
,可得
的坐標,假設存在
,運用兩直線垂直的條件:斜率之積為
,結合
在雙曲線上,化簡整理,即可得到定點
;(3)設出直線
的方程,代入雙曲線的方程,運用韋達定理,由向量數量積的性質,可得向量
,
的數量積為0,化簡整理,解方程可得
的值,檢驗判別式大于0成立,進而得到直線
的方程.
解:(1)由已知,得,故雙曲線
的方程為
為直線AM的一個方向向量,
直線AM的方程為
它與
軸的交點為
(2)由條件,得且
為直線AN的一個方向向量,
故直線AN的方程為它與
軸的交點為
假設在軸上存在定點
,使得
,則
由及
得
故即存在定點
,其坐標為
或
滿足題設條件.
(3)由知,以
為鄰邊的平行四邊形的對角線的長相等,故此四邊形為矩形,從而
由已知,可設直線的方程為
并設
則由得
由及
得
且
(*)
由
得
故符合約束條件(*).
因此,所求直線的方程為
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.
(1)若E是SD的中點,求證:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2,且DE
DS,求二面角S﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為正整數,若兩個項數都不小于
的數列
,
滿足:存在正數
,當
且
時,都有
,則稱數列
,
是“
接近的”.已知無窮等比數列
滿足
,無窮數列
的前
項和為
,
,且
,
.
(1)求數列通項公式;
(2)求證:對任意正整數,數列
,
是“
接近的”;
(3)給定正整數,數列
,
(其中
)是“
接近的”,求
的最小值,并求出此時的
(均用
表示).(參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程數按1元/公里計費;②行駛時間不超過分時,按
元/分計費;超過
分時,超出部分按
元/分計費.已知王先生家離上班地點
公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間
(分)是一個隨機變量.現統計了
次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 | ||||
頻數 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用
(元)與用車時間
(分)的函數關系式;(2)若王先生一次開車時間不超過
分為“路段暢通”,設
表示3次租用新能源分時租賃汽車中“路段暢通”的次數,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,短軸兩個端點為
,且四邊形
是邊長為2的正方形.
(1)求橢圓的方程;
(2)設是橢圓
上一點,
為橢圓長軸上一點,求
的最大值與最小值;
(3)設是橢圓
外的動點,滿足
,點
是線段
與該橢圓的交點,點
在線段
上,并且滿足
,
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點分別是棱長為2的正方體
的棱
的中點.如圖,以
為坐標原點,射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標系.
(1)求向量與
的數量積;
(2)若點分別是線段
與線段
上的點,問是否存在直線
,
平面
?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的通項公式為
,其中
,
、
.
(1)試寫出一組、
的值,使得數列
中的各項均為正數.
(2)若,
,數列
滿足
,且對任意的
(
),均有
,寫出所有滿足條件的
的值.
(3)若,數列
滿足
,其前
項和為
,且使
(
、
,
)的
和
有且僅有
組,
、
、…、
中有至少
個連續項的值相等,其它項的值均不相等,求
、
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,給出以下四個命題:(1)當
時,
單調遞減且沒有最值;(2)方程
一定有實數解;(3)如果方程
(
為常數)有解,則解得個數一定是偶數;(4)
是偶函數且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前
項和為
,且
.
(1)求出,
,
的值,并求出
及數列
的通項公式;
(2)設,求數列
的前
項和
;
(3)設,在數列
中取出
(
且
)項,按照原來的順序排列成一列,構成等比數列
,若對任意的數列
,均有
,試求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com