【題目】已知函數(a>0且a≠1).
(1)若f(x)為定義域上的增函數,求實數a的取值范圍;
(2)令a=e,設函數,且g(x1)+g(x2)=0,求證:x1+x2≥2+
.
【答案】(1);(2)見解析
【解析】
(1)f'(x)=2x2-3x+,
由f(x)為增函數可得f'(x)≥0恒成立,
則由2x2-3x+≥02x3-3x2≥-
,設m(x)=2x3-3x2,則
m'(x)=6x2-6x,由m'(x)=0,得x=1(x=0舍去),故
m(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,
所以m(x)min=m(1)=-1,所以-1≥-,
當a>1時,易知a≤e,當0<a<1時,則<0,這與1≤
矛盾,
從而不能使f'(x)≥0恒成立,所以1<a≤e.
(2)證明:g(x)=x3-x2+ln x-x3-4ln x+6x=-x2-3ln x+6x,因為g(x1)+g(x2)=0,
所以--3ln x1+6x1+
=0,
所以-(+
)-3ln(x1x2)+6(x1+x2)=0,
即-[(x1+x2)2-2x1x2]-ln(x1x2)+2(x1+x2)=0,
即-(x1+x2)2+x1x2-ln(x1x2)+2(x1+x2)=0,
所以-(x1+x2)2+2(x1+x2)=ln(x1x2)-x1x2.
令x1x2=t,g(t)=ln t-t,則g'(t)=-1=,g(t)在(0,1)上遞增,在(1,+∞)上遞減,
所以g(t)≤g(1)=-1,所以-(x1+x2)2+2(x1+x2)≤-1,整理得(x1+x2)2-4(x1+x2)-2≥0,
解得x1+x2≥2+或x1+x2≤2-
(舍去),所以x1+x2≥2+
.
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通項公式;
(2)若數列{bn}滿足,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,
,且小正方形與大正方形面積之比為
,則
的值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著我市經濟的快速發展,政府對民生也越來越關注. 市區現有一塊近似正三角形土地ABC(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形DBE,DAG和ECF,其中、
與
分別相切于點D、E,且
與
無重疊,剩余部分(陰影部分)種植草坪. 設BD長為x(單位:百米),草坪面積為S(單位:百米2).
(1)試用x分別表示扇形DAG和DBE的面積,并寫出x的取值范圍;
(2)當x為何值時,草坪面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(e為自然對數的底數,e≈2.718).對于任意的
(0,e),在區間(0,e)上總存在兩個不同的
,
,使得
=
=
,則整數a的取值集合是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】光線從點射出,到
軸上的
點后,被
軸反射到
軸上的
點,又被
軸反射,這時反射線恰好過點
.
(1)求所在直線的方程;
(2)過點且斜率為
的直線
與
,
軸分別交于
、
,過
、
作直線
的垂線,垂足為
、
,求線段
長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】質檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質量指標,由檢測結果得到如圖的頻率分布直方圖:
(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質量指標的方差分別為
,試比較
的大。ㄖ灰髮懗龃鸢福;
(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質量指標大于20,且另—個桶的質量指標不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質量指標值服從正態分布
.其中
近似為樣本平均數
,
近似為樣本方差
,設
表示從乙種食用油中隨機抽取10桶,其質量指標值位于(14.55, 38.45)的桶數,求
的數學期望.
注:①同一組數據用該區間的中點值作代表,計算得:
②若,則
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com