【題目】已知函數(
),若有且僅有兩個整數
,使得
,則
的取值范圍為
A. [) B. [
) C. [
) D. [
)
【答案】D
【解析】
設g(x)=ex(3x﹣1),h(x)=ax﹣a,對g(x)求導,將問題轉化為存在2個整數xi使得g(xi)在直線h(x)=ax﹣a的下方,求導數可得函數的極值,解g(﹣1)﹣h(﹣1)<0,g(﹣2)﹣h(﹣2)≥0,求得a的取值范圍.
設g(x)=ex(3x﹣1),h(x)=ax﹣a,
則g′(x)=ex(3x+2),
∴x∈(﹣∞,﹣),g′(x)<0,g(x)單調遞減,
x∈(﹣,+∞),g′(x)>0,g(x)單調遞增,
∴x=﹣,取最小值
,
∴g(0)=﹣1<﹣a=h(0),
g(1)﹣h(1)=2e>0,
直線h(x)=ax﹣a恒過定點(1,0)且斜率為a,
∴g(﹣1)﹣h(﹣1)=﹣4e﹣1+2a<0,
∴a<,
g(﹣2)=﹣,h(﹣2)=﹣3a,
由g(﹣2)﹣h(﹣2)≥0,解得:a≥,
故答案為:[).
故選:D.
科目:高中數學 來源: 題型:
【題目】已知雙曲線(a>b>0)的左、右焦點分別是F1,F2,過F2的直線交雙曲線的右支于P,Q兩點,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為 ( )
A. B.
C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數,例如:
他們研究過圖1中的1,3,6,10,…,由于這些數能夠表示成三角形,將其稱為三角形數;類似地,稱圖2中的1,4,9,16,…這樣的數為正方形數.下列數中既是三角形數又是正方形數的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構對某校高二文科學生的記憶力x和判斷力y進行統計分析,得下表數據.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(3)試根據(2)中求出的線性回歸方程,預測記憶力為14的學生的判斷力.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
.在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的直角坐標方程和直線
普通方程;
(2)設圓與直線
交于點
,若點
的坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從中國某城市的高中生中,隨機抽取了55人,從美國某城市的高中生中隨機抽取了45人進行答題.中國高中生答題情況是:選擇家的占、朋友聚集的地方占
、個人空間占
.美國高中生答題情況是:朋友聚集的地方占
、家占
、個人空間占
.如下表:
在家里最幸福 | 在其它場所幸福 | 合計 | |
中國高中生 | |||
美國高中生 | |||
合計 |
(Ⅰ)請將列聯表補充完整;試判斷能否有
的把握認為“戀家”與否與國別有關;
(Ⅱ)從被調查的不“戀家”的美國學生中,用分層抽樣的方法選出4人接受進一步調查,再從4人中隨機抽取2人到中國交流學習,求2人中含有在“個人空間”感到幸福的學生的概率.
附:,其中
.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點P(0,﹣1)是橢圓C1:+
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)橢圓C:+
=1(a>b>0)與x軸交于A、B兩點,點P是橢圓C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,求證:
為定值b2﹣a2.
(2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點,點P是雙曲線C上異于A、B的任意一點,直線PA、PB分別與y軸交于點M、N,則
為定值.請寫出這個定值(不要求給出解題過程).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com