精英家教網 > 高中數學 > 題目詳情

【題目】已知在直角坐標系中,曲線的方程是,直線經過點,傾斜角為,以為極點,軸的正半軸為極軸建立極坐標系.

(1)寫出曲線的極坐標方程和直線的參數方程;

(2)設直線與曲線相交于,兩點,求的值.

【答案】(1)為參數);(2)1

【解析】分析:(1)曲線的方程是,展開把,代入可得極坐標方程,由于直線經過點,傾斜角為,可得參數方程為參數);(2)直線的參數方程為為參數).

代入曲線的方程中整理得,

利用韋達定理以及直線參數方程法幾何意義可得結果..

詳解(1)曲線的極坐標方程為

∵ 直線經過點,傾斜角為,

∴ 直線的參數方程可以寫成為參數);

(2)由直線經過點,傾斜角為,可得直線過原點,

以點為參考點的直線的參數方程為為參數).

代入曲線的方程中整理得,

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知cos(α﹣β)=﹣ ,cos(α+β)= ,且(α﹣β)∈( ,π),(α+β)∈( ,2π),則cos2α=(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數方程為為參數, ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中,,,為線段的垂直平分線,交與點上異于的任意一點.

的值;

判斷的值是否為一個常數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設橢圓 + =1(a>b>0)的左右焦點分別為F1 , F2 , 點D在橢圓上,DF1⊥F1F2 , =2 ,△DF1F2的面積為 . (Ⅰ)求該橢圓的標準方程;
(Ⅱ)是否存在圓心在y軸上的圓,使圓在x軸的上方與橢圓有兩個交點,且圓在這兩個交點處的兩條切線互相垂直并分別過不同的焦點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】表示大于的整數的十位數,例如,.已知,,都是大于的互不相等的整數,現有如下個命題:

①若,則;②,;

③若是質數,則也是質數;④若,成等差數列,則,可能成等比數列.

其中所有的真命題為( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+1|. (Ⅰ)解不等式f(x+8)≥10﹣f(x);
(Ⅱ)若|x|>1,|y|<1,求證:f(y)<|x|f( ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视