精英家教網 > 高中數學 > 題目詳情

【題目】某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費,預計當每件商品的售價為元時,一年的銷售量為萬件.

1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數關系式;

2)當每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

【答案】I.

II)當每件商品的售價為7元時,該連鎖分店一年的利潤最大,最大值為萬元;

每件商品的售價為元時,該連鎖分店一年的利潤最大,最大值為萬元.

【解析】

試題(1)該連鎖分店一年的利潤L(萬元)與售價x的函數關系式為

L(x)= (x4a)(10x)2,x∈[8,9]

2=(10x)(18+2a3x),

,得x =6+ax=10(舍去).∵1≤a≤3,≤6+a≤8.

所以L(x)x∈[8,9]上單調遞減,故=L(8)=(84a)(108)2=164a

M(a) =164a.

答:當每件商品的售價為8元時,該連鎖分店一年的利潤L最大,

最大值為164a萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:min)繪制了莖葉圖:則下列結論中表述不正確的是

A. 第一種生產方式的工人中,有75%的工人完成生產任務所需要的時間至少80分鐘

B. 第二種生產方式比第一種生產方式的效率更高

C. 這40名工人完成任務所需時間的中位數為80

D. 無論哪種生產方式的工人完成生產任務平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】P是橢圓上一點,M,N分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三角形 的邊長為3, 分別是邊上的點,滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).

(1)求證:平面 ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數為1,2,3的人數分別為3,3,4.現從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數之和為4”為事件,求事件發生的概率;

(2)設為選出2人參加義工活動次數之差的絕對值,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為.數列滿足,.

1)若,且,求正整數的值;

2)若數列,均是等差數列,求的取值范圍;

3)若數列是等比數列,公比為,且,是否存在正整數,使,,成等差數列,若存在,求出一個的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為偶函數,且在上單調遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點作圓的兩條切線,切點分別為,直線恰好經過橢圓C的右頂點和上頂點.

1)求橢圓C方程;

2)過橢圓C左焦點F的直線l交橢圓C兩點,橢圓上存在一點P,使得四邊形為平行四邊形,求直線l的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某乳業公司生產甲、乙兩種產品,需要AB,C三種苜蓿草飼料,生產1個單位甲種產品和生產1個單位乙種產品所需三種苜蓿草飼料的噸數如下表所示:

產品

苜蓿草飼料

A

B

C

4

8

3

5

5

10

現有A種飼料200噸,B種飼料360噸,C種飼料300噸,在此基礎上生產甲乙兩種產品,已知生產1個單位甲產品,產生的利潤為2萬元;生產1個單位乙產品,產生的利潤為3萬元,分別用xy表示生產甲、乙兩種產品的數量.

1)用x,y列出滿足生產條件的數學關系式,并畫出相應的平面區域;

2)問分別生產甲乙兩種產品多少時,能夠產出最大的利潤?并求出此最大利潤.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视