【題目】在棱長為2的正方體中,點
是對角線
上的點(點
與
、
不重合),則下列結論正確的個數為( )
①存在點,使得平面
平面
;
②存在點,使得
平面
;
③若的面積為
,則
;
④若、
分別是
在平面
與平面
的正投影的面積,則存在點
,使得
.
A.1個B.2個C.3個D.4個
【答案】C
【解析】
由線面垂直的判定定理和面面垂直的判定定理,可判定①正確;由面面平行的性質定理,可得判定②正確;由三角形的面積公式,可求得的面積為
的范圍,可判定③錯誤;由三角形的面積公式,得到
的范圍,可判定④正確.
連接,設平面
與對角線
交于
,
由,可得
平面
,即
平面
,
所以存在點,使得平面
平面
,所以①正確;
由,
利用平面與平面平行的判定,可得證得平面平面
,
設平面與
交于
,可得
平面
,所以②正確;
連接交
于點
,過
點作
,
在正方體中,
平面
,所以
,
所以為異面直線
與
的公垂線,
根據,所以
,即
,
所以的最小面積為
.
所以若的面積為
,則
,所以③不正確;
再點從
的中點向著點
運動的過程中,
從
減少趨向于0,即
,
從
增大到趨向于
,即
,在此過程中,必存在某個點
使得
,
所以④是正確的.
綜上可得①②④是正確的.
故選:C.
科目:高中數學 來源: 題型:
【題目】某農科站技術員為了解某品種樹苗的生長情況,在該批樹苗中隨機抽取一個容量為100的樣本,測量樹苗高度(單位:cm).經統計,高度均在區間[20,50]內,將其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于40cm的樹苗為優質樹苗.
(1)已知所抽取的這100棵樹苗來自于甲、乙兩個地區,部分數據如下2×2列聯表所示,將列聯表補充完整,并根據列聯表判斷是否有99.9%的把握認為優質樹苗與地區有關?
(2)用樣本估計總體的方式,從這批樹苗中隨機抽取4棵,期中優質樹苗的棵數記為X,求X的分布列和數學期望.
甲地區 | 乙地區 | 合計 | |
優質樹苗 | 5 | ||
非優質樹苗 | 25 | ||
合計 |
附:K2=,其中n=a+b+c+d
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的底面是邊長為
的菱形,
,點E是棱BC的中點,
,點P在平面ABCD的射影為O,F為棱PA上一點.
1
求證:平面
平面BCF;
2
若
平面PDE,
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“我將來要當一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將
連接,設
中邊
所對的角為
,
中邊
所對的角為
,經測量已知
,
.
(1)霍爾頓發現無論多長,
為一個定值,請你驗證霍爾頓的結論,并求出這個定值;
(2)霍爾頓發現麥田的生長于土地面積的平方呈正相關,記與
的面積分別為
和
,為了更好地規劃麥田,請你幫助霍爾頓求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業擁有3條相同的生產線,每條生產線每月至多出現一次故障.各條生產線是否出現故障相互獨立,且出現故障的概率為.
(1)求該企業每月有且只有1條生產線出現故障的概率;
(2)為提高生產效益,該企業決定招聘名維修工人及時對出現故障的生產線進行維修.已知每名維修工人每月只有及時維修1條生產線的能力,且每月固定工資為1萬元.此外,統計表明,每月在不出故障的情況下,每條生產線創造12萬元的利潤;如果出現故障能及時維修,每條生產線創造8萬元的利潤;如果出現故障不能及時維修,該生產線將不創造利潤,以該企業每月實際獲利的期望值為決策依據,在與
之中選其一,應選用哪個?(實際獲利=生產線創造利潤-維修工人工資)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com