【題目】已知函數,三個函數的定義域均為集合
.
(1)若恒成立,滿足條件的實數
組成的集合為
,試判斷集合
與
的關系,并說明理由;
(2)記,是否存在
,使得對任意的實數
,函數
有且僅有兩個零點?若存在,求出滿足條件的最小正整數
;若不存在,說明理由.(以下數據供參考:
)
科目:高中數學 來源: 題型:
【題目】定義:在平面內,點到曲線
上的點的距離的最小值稱為點
到曲線
的距離,在平面直角坐標系
中,已知圓
:
及點
,動點
到圓
的距離與到
點的距離相等,記
點的軌跡為曲線
.
(1)求曲線的方程;
(2)過原點的直線(
不與坐標軸重合)與曲線
交于不同的兩點
,點
在曲線
上,且
,直線
與
軸交于點
,設直線
的斜率分別為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過 300 分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設該公司在甲、乙兩個電視臺做廣告的時間分別為分鐘和
分鐘.
(Ⅰ)用列出滿足條件的數學關系式,并畫出相應的平面區域;
(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,并求出最大收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中山某學校的場室統一使用“歐普照明”的一種燈管,已知這種燈管使用壽命(單位:月)服從正態分布
,且使用壽命不少于
個月的概率為
,使用壽命不少于
個月的概率為
.
(1)求這種燈管的平均使用壽命;
(2)假設一間課室一次性換上支這種新燈管,使用
個月時進行一次檢查,將已經損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線與拋物線
相交于不同兩點
、
,
為坐標原點.
(1)求拋物線的焦點到準線的距離;
(2)若直線又與圓
相切于點
,且
為線段
的中點,求直線
的方程;
(3)若,點
在線段
上,滿足
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,通項
滿足
(
是常數,
且
).
(Ⅰ)求數列的通項公式;
(Ⅱ)當時,證明
;
(Ⅲ)設函數,
,是否存在正整數
,使
對
都成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景點擬建一個扇環形狀的花壇(如圖所示),按設計要求扇環的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為
(弧度).
⑴ 求關于
的函數關系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設花壇的面積與裝飾總費用之比為,求
關于
的函數關系式,并求出
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com